

R-CAS-V Химический анкер (винилоэстровая смола) в ампуле для вкручивания с резьбовыми шпильками

Высококачественный химический анкер на основе винилоэстеровой смолы без содержания стирола для выполнения креплений в бетоне.

Сертификаты и одобрения

• ETA-10-0108

Информация о продукте

Свойства и преимущества

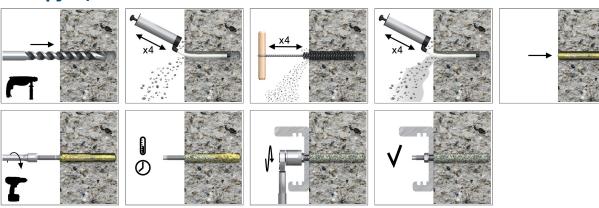
- Одобрено для использования с арматурой в бетоне без трещин (ETAG001 Вариант 7)
- Высокая эффективность при выполнении креплений, требующих наивысшего уровня надежности и максимальной нагрузки с возможностью анкеровки с небольшими интервалами и вблизи краев элемента.
- Система работает по принципу садгезии с основанием обеспечивающего достаточно однородное распределение напряжений вдоль анкера, благодаря чему его можно устанавливать недалеко от краев или в непосредственной близости от других креплений.

Применение

- Анкеровка резьбовых шпилек
- Балюстрады
- Перила
- Тяжелые машины
- Стальные конструкции
- Стальные колонны
- Укрепления фасада
- Защитные стены
- Опалубка
- Светопрозрачные (витражные) ограждающие конструкции
- Гаражная дверь
- Перила

Материал

основания

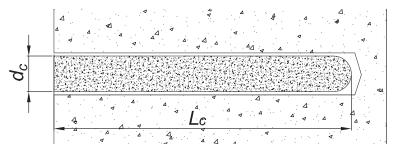

Сертифицированы для:

• Бетон без трещин C20/25-C50/60

Также для применения в:

• Натуральный камень (после проведения испытаний)

Инструкция монтажа



Информация о продукте

- 1. Просверлить отверстие необходимого диаметра и с соответствующей глубиной.
- 2. Удалить сверлильную стружку путем четырехкратной очистки отверстия с помощью ручного насоса и ершика. Данная операция является обязательной перед выполнением монтажа.
- 3. Вставить в отверстие капсулу. Вставить анкерную шпильку в патрон автоматической дрели и закрепить с помощью специального приспособления
- 4. Вставить шпильку в стеклянную капсулу, включить автоматическую дрель и закрутить шпильку в капсулу. Отключить автоматическую дрель, как только шпилька достигнет дна отверстия.
- 5. Оставить анкер до полного отвердевания.
- 6. Установить прикрепляемый элемент и затянуть гайку с необходимым крутящим моментом

Изделие	Описание/Вид смолы
R-CAS-V-08	
R-CAS-V-10	
R-CAS-V-12	
R-CAS-V-16	Винилоэстровая смола без содержания стирола
R-CAS-V-20	
R-CAS-V-24	
R-CAS-V-30	

Основные монтажные параметры

R-STUDS

Размер			M8	M10	M12	M16	M20	M24	M30
Диаметр резьбы	d	[MM]	8	10	12	16	20	24	30
Диаметр отверстия в основании	d _o	[MM]	10	12	14	18	24	28	35
Размер капсулы		[MM]	8	10	12	16	20	24	30
Диаметр капсулы	[Russian]: dc	[мм]	9.25	10.75	12.65	16.75	21.55	23.75	33.2
Крутящий момент	T _{inst}	[Nm]	10	20	40	80	120	180	300
Минимальная глубина отверстия в основании	h _o	[MM]	h _{nom} + 5						
Минимальная глубина заделки анкера в основание	h _{nom}	[MM]	80	90	110	125	170	210	270
Минимальная толщина основания	h _{min}	[MM]	120	130	140	180	230	270	340
Минимальное расстояние между точками крепления	S _{min}	[мм]	0.5 * Полезн ая глубина анкеров ки (h _{ef}) ≥ 40						
Минимальное расстояние от края основания	C _{min}	[мм]	0.5 * Полезн ая глубина анкеров ки (h _{ef}) ≥ 40	0.5 * Полезн ая глубина анкеров ки (h _e) ≥ 40	0.5 * Полезн ая глубина анкеров ки (h _{er}) ≥ 40	0.5 * Полезн ая глубина анкеров ки (h _e ,) ≥ 40	0.5 * Полезн ая глубина анкеров ки (h _e) ≥ 40	0.5 * Полезн ая глубина анкеров ки (h _e) ≥ 40	0.5 * Полезн ая глубина анкеров ки (h _{ef}) ≥ 40

Основные монтажные параметры

Минимальное время отвердения и монтажа

Температура смолы	Температура основания	Время отверждения	Время монтажа
[°C]	[°C]	[min]	[min]
5	-5	480	-
5	0	240	-
5	5	150	-
10	10	120	-
15	15	90	-
20	20	45	-
25	30	20	-
25	40	10	-

Механические характеристики

Размер			М8	M10	M12	M16	M20	M24	M30
Предел прочности при растяжении	F _{uk}	[N/mm2]	500	500	500	500	500	500	500
Предел текучести при растяжении	F _{yk}	[N/mm2]	400	400	400	400	400	400	400
Зона сечения – вырыв	A_s	[MM2]	37	58	84	157	245	353	560
Упругий момент сопротивления сечения	W_{el}	[мм3]	31	62	109	278	541	935	1868
Характеристический изгибающий момент	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	561	1124
Расчётное сопротивление изгибу	М	[Nm]	15	30	52	133	259	449	899
Допустимая устойчивость к изгибу	M _{rec}	[Nm]	11	21	37	95	185	321	642
Предел прочности при растяжении	F _{uk}	[N/mm2]	800	800	800	800	800	800	800
Предел текучести при растяжении	F _{yk}	[N/mm2]	640	640	640	640	640	640	640
Зона сечения – вырыв	A_s	[MM2]	37	58	84	157	245	353	560
Упругий момент сопротивления сечения	W_{el}	[мм3]	31	62	109	278	541	935	1868
Характеристический изгибающий момент	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1799
Расчётное сопротивление изгибу	М	[Nm]	24	48	84	213	416	718	1439
Допустимая устойчивость к изгибу	M _{rec}	[Nm]	17	34	60	152	297	513	1028
Предел прочности при растяжении	f_{uk}	[N/mm2]	700	700	700	700	700	700	700
Предел текучести при растяжении	f_{yk}	[N/mm2]	450	450	450	450	450	450	450
Зона сечения – вырыв	A_s	[MM2]	37	58	84	157	245	353	560
Упругий момент сопротивления сечения	W_{el}	[мм3]	31	62	109	278	541	935	1868
Характеристический изгибающий момент	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1574
Расчётное сопротивление изгибу	М	[Nm]	17	34	59	149	291	504	1009
Допустимая устойчивость к изгибу	M _{rec}	[Nm]	12	24	42	107	208	360	721

Основные механические параметры

Рабочие характеристики отдельного анкера без учета влияния краёв и соседних анкеров

Размер	M8	M10	M12	M16	M20	M24	M30							
Основание				Б	етон без трещи	ІН								
Эффективная глубина анкеровки \mathbf{h}_{ef}	80.0	90.0	110.0	125.0	170.0	210.0	270.0							
		СРЕДНЯ	Я РАЗРУШАЮ	ЩАЯ НАГРУЗК	A									
УСИЛИЕ НА ВЫРЫВ $N_{_{Ru,m}}$														
R-STUDS МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 5.8	[ĸH]	18.9	30.5	44.1	82.9	128.2	171.0	259.6						
R-STUDS-88 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 8.8	[kH]	30.5	40.7	59.7	82.9	128.2	171.0	259.6						
R-STUDS-A4 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ КЛАСС А4	[ĸH]	27.3	40.7	59.7	82.9	128.2	171.0	259.6						
			усилие на ср	PE3 V _{Ru,m}										
R-STUDS МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 5.8	[ĸH]	11.3	18.3	26.5	49.1	76.9	110.9	176.4						
R-STUDS-88 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 8.8	[kH]	18.3	30.0	42.2	79.4	123.5	177.7	282.9						
R-STUDS-A4 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ КЛАСС А4	[ĸH]	16.4	25.8	37.2	69.3	107.7	155.6	247.6						
		X.	АРАКТЕРНАЯ Н	ІАГРУЗКА										
		۷	′СИЛИЕ НА ВЫ	IРЫВ N _{Rk}										
R-STUDS МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 5.8	[ĸH]	18.0	29.0	42.0	68.8	106.8	142.5	216.3						
R-STUDS-88 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 8.8	[ĸH]	26.1	33.9	49.8	68.8	106.8	142.5	216.3						
R-STUDS-A4 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ КЛАСС А4	[ĸH]	26.0	33.9	49.8	68.8	106.8	142.5	216.3						
			усилие на с	PE3 V _{Rk}										
R-STUDS МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 5.8	[kH]	9.00	14.0	21.0	39.0	61.0	88.0	140.0						
R-STUDS-88 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 8.8	[ĸH]	15.0	23.0	34.0	63.0	98.0	141.0	224.0						
R-STUDS-A4 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ КЛАСС А4	[ĸH]	13.0	20.0	29.0	55.0	86.0	124.0	196.0						

Основные механические параметры

Размер	M8	M10	M12	M16	M20	M24	M30								
		F	АН КАНТЭРОА	ГРУЗКА											
	УСИЛИЕ НА ВЫРЫВ N _{Rd}														
R-STUDS МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 5.8	[ĸH]	12.0	18.9	27.7	38.2	59.3	79.2	120.2							
R-STUDS-88 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 8.8	[ĸH]	14.5	18.9	27.7	38.2	59.3	79.2	120.2							
R-STUDS-A4 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ КЛАСС А4	[kH]	13.9	18.9	27.7	38.2	59.3	79.2	120.2							
усилие на срез V _{Rd}															
R-STUDS МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 5.8	[ĸH]	7.20	11.2	16.8	31.2	48.8	70.4	112.0							
R-STUDS-88 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 8.8	[ĸH]	12.0	18.4	27.2	50.4	78.4	112.8	179.2							
R-STUDS-A4 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ КЛАСС А4	[kH]	8.33	12.8	18.6	35.3	55.1	79.5	125.6							
		PEK	ОМЕНДУЕМАЯ	НАГРУЗКА											
		У	СИЛИЕ НА ВЫ	РЫВ N _{гес}											
R-STUDS МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 5.8	[ĸH]	8.57	13.5	19.8	27.3	42.4	56.6	85.8							
R-STUDS-88 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 8.8	[ĸH]	10.4	13.5	19.8	27.3	42.4	56.6	85.8							
R-STUDS-A4 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ КЛАСС А4	[kH]	9.93	13.5	19.8	27.3	42.4	56.6	85.8							
			УСИЛИЕ НА С	PE3 V _{rec}											
R-STUDS МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 5.8	[ĸH]	5.14	8.00	12.0	22.3	34.9	50.3	80.0							
R-STUDS-88 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ УГЛЕРОДИСТОЙ СТАЛИ КЛАСС СТАЛИ 8.8	[ĸH]	8.57	13.1	19.4	36.0	56.0	80.6	128.0							
R-STUDS-A4 МЕТРИЧЕСКАЯ РЕЗЬБОВАЯ ШПИЛЬКА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ КЛАСС А4	[ĸH]	5.95	9.16	13.3	25.2	39.4	56.8	89.7							

Рабочие параметры

R-STUDS

Размер			M8	M10	M12	M16	M20	M24	M30
Эффективная глубина анкеровки	h _{ef}	[мм]	80.00	90.00	110.00	125.00	170.00	210.00	270.00
			УСИ	ЛИЕ НА ВЫРЬ	IB				
РАЗРУШЕНИЕ СТАЛИ; СТАЛЬ	КЛАССА	A 5.8							
Характерная нагрузка	N _{Rk,s}	[ĸH]	18.00	29.00	42.00	78.00	122.00	176.00	280.00
Частичный коэффициент безопасности	Υ _{Ms}	-	1.50	1.50	1.50	1.50	1.50	1.50	1.50
РАЗРУШЕНИЕ СТАЛИ; СТАЛЬ	КЛАССА	A 8.8							
Карактерная нагрузка	$N_{\text{Rk,s}}$	[ĸH]	29.00	46.00	67.00	126.00	196.00	282.00	448.00
Настичный коэффициент безопасности	γ_{Ms}	-	1.50	1.50	1.50	1.50	1.50	1.50	1.50
РАЗРУШЕНИЕ СТАЛИ; СТАЛЬ	КЛАССА	A A4-70							
Характерная нагрузка	N _{Rk,s}	[ĸH]	26.00	41.00	59.00	110.00	171.00	247.00	392.00
Частичный коэффициент безопасности	γ_{Ms}	-	1.87	1.87	1.87	1.87	1.87	1.87	1.87
КОМБИНИРОВАННОЕ РАЗРУ	ШЕНИЕ	вследстви	ІЕ ВЫРЫВАН	ІИЯ АНКЕРА	и конуса бі	ETOHA; [RUSS	IAN]: NON-CR	ACKED CONC	RETE, C20
Карактеристическое сопротивление связи	T_{Rk}	[N/mm2]	13.00	12.00	12.00	11.00	10.00	9.00	8.50
[Russian]: Sustained load factor	Ψ^0_{sus}	-	0.60	0.60	0.60	0.60	0.60	0.60	0.60
КОМБИНИРОВАННОЕ РАЗРУ	ШЕНИЕ	вследстви	ІЕ ВЫРЫВАН	ІИЯ АНКЕРА	и конуса бі	ETOHA; [RUSS	IAN]: NON-CR	ACKED CONC	RETE, C20
Характеристическое сопротивление связи	T _{Rk}	[N/mm2]	13.00	12.00	12.00	11.00	10.00	9.00	8.50
[Russian]: Sustained load factor	Ψ^0_{sus}	-	0.60	0.60	0.60	0.60	0.60	0.60	0.60
КОМБИНИРОВАННОЕ РАЗРУІ	ПЕНИЕ 6	вследстви	ВЫРЫВАНИ	ІЯ АНКЕРА И І	ОНУСА БЕТО	НА			
∕ровень безопасности установки	γ_{inst}	-	1.20	1.20	1.20	1.20	1.20	1.20	1.20
Увеличивающий коэффициент для N _{Rd,p} - C30/37	Ψ,	-	1.04	1.04	1.04	1.04	1.04	1.00	1.00
/величивающий коэффициент для N _{Rd,p} - C40/50	Ψ,	-	1.07	1.07	1.07	1.07	1.07	1.00	1.00
/величивающий коэффициент для N _{Rd,p} - C50/60	Ψ,	-	1.09	1.09	1.09	1.09	1.09	1.00	1.00
РАЗРУШЕНИЕ КОНУСА БЕТОН	IA								
∕ровень безопасности установки	γ_{inst}	-	1.20	1.20	1.20	1.20	1.20	1.20	1.20
Соэффициент преднапряженном бетоне	k _{ucr,N}	-	11.00	11.00	11.00	11.00	11.00	11.00	11.00
Расстояние от края	C _{cr,N}	[MM]	1,5*h _{ef}						
Расстояние между анкерами	S _{cr,N}	[мм]	3,0*h _{ef}						
[RUSSIAN]: CONCRETE SPLITTI	NG FAIL	URE							
Уровень безопасности установки	Y _{inst}	-	1.20	1.20	1.20	1.20	1.20	1.20	1.20

Рабочие параметры

Размер			M8	M10	M12	M16	M20	M24	M30
			усі	илие на срез	3				
РАЗРУШЕНИЕ СТАЛИ; СТАЛІ	ь КЛАССА	5.8							
Характерная нагрузка без эксцентрика	V _{Rk,s}	[ĸH]	9.00	14.00	21.00	39.00	61.00	88.00	140.00
Коэффициент пластичности	k,	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Характерная нагрузка с эксцентриком	M _{Rk,s}	[Nm]	19.00	37.00	65.00	166.00	324.00	561.00	1124.00
Частичный коэффициент безопасности	Υ _{Ms}	-	1.25	1.25	1.25	1.25	1.25	1.25	1.25
РАЗРУШЕНИЕ СТАЛИ; СТАЛІ	ь класса	8.8							
Характерная нагрузка без эксцентрика	$V_{\text{Rk,s}}$	[ĸH]	15.00	23.00	34.00	63.00	98.00	141.00	224.00
Коэффициент пластичности	k,	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Характерная нагрузка с эксцентриком	$M_{Rk,s}$	[Nm]	30.00	60.00	105.00	266.00	519.00	898.00	1799.00
Частичный коэффициент безопасности	Y _{Ms}	-	1.25	1.25	1.25	1.25	1.25	1.25	1.25
РАЗРУШЕНИЕ СТАЛИ; СТАЛІ	ь КЛАССА	A4-70							
Характерная нагрузка без эксцентрика	V _{Rk,s}	[ĸH]	13.00	20.00	29.00	55.00	86.00	124.00	196.00
Коэффициент пластичности	k,	-	0.80	0.80	0.80	0.80	0.80	0.80	0.80
Характерная нагрузка с эксцентриком	M _{Rk,s}	[Nm]	26.00	52.00	92.00	233.00	454.00	786.00	1574.00
Частичный коэффициент безопасности	Υ _{Ms}	-	1.56	1.56	1.56	1.56	1.56	1.56	1.56
РАЗРУШЕНИЕ, ВЫЗВАННОЕ	отколог	м БЕТОНА							
Коэффициент	k	-	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Уровень безопасности установки	Y _{inst}	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00
РАЗРУШЕНИЕ КРАЕВ БЕТОН	ного осі	нования							
Диаметр анкера	d _{nom}	[MM]	8.00	10.00	12.00	16.00	20.00	24.00	30.00
Эффективная длина анкера	l _f	[MM]	80.00	90.00	110.00	125.00	170.00	210.00	270.00
Уровень безопасности установки	Y _{inst}	-	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Комбинированный отказ вытягивания анкера и отламывания конуса бетона (EN 1992-4:2018, p.7.2.1.6., 7.14 - $N_{Rk,p}^0 = \psi_{sus}^0 * \tau_{Rk}^* * n * d * h_{ef}^*$). $h_{ef} = h_{nom}$

Данные логистики

		Количество [шт]					
Изделие	Единичная упаковка	ПОДДОН		Единичная упаковка	Сборная упаковка	Поддон	штрих-код
R-CAS-V-08 1)	10	480	5760	0.16	7.7	121.9	5906675280189
R-CAS-V-10 1)	10	480	5760	0.21	10.0	150.2	5906675280196
R-CAS-V-12 1)	10	480	5760	0.26	12.7	182.3	5906675280202
R-CAS-V-16 1)	10	480	5760	0.38	18.0	246.1	5906675280219
R-CAS-V-20 1)	6	108	1296	0.90	16.2	223.8	5906675280226
R-CAS-V-24 1)	6	108	1296	1.04	18.8	255.3	5906675280233
R-CAS-V-30 1)	4	32	384	1.75	14.0	197.8	5906675280240

1) ETA-10-0108