

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6132 of 26/09/2022
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	R-KEX-II
Product family to which the construction product belongs:	Area Code 33, Bonded fasteners with threaded rod, rod with inner thread and rebar for use in concrete
Manufacturer:	RAWLPLUG S.A. ul. Kwidzyńska 6 51-416 Wrocław Poland
Manufacturing plant(s):	Manufacturing Plant No. 3
This UK Technical Assessment contains:	39 pages including 3 annexes which form an integral part of this assessment
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330499-01-0601 "Bonded fasteners for use in concrete"

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1. Technical description of the product

R-KEX-II are bonded anchors (injection type) consisting of an injection mortar cartridge using an applicator gun equipped with a special mixing nozzle and steel element.

The steel element consists of:

- threaded anchor rod sizes M8 to M30 made of:
 - galvanized carbon steel,
 - carbon steel with zinc flake coating,
 - stainless steel,
- high corrosion resistant stainless steel, with hexagon nut and washer,
- anchor rod with inner thread sizes M6/Ø10 to M16/Ø24 made of:
 - galvanized carbon steel,
 - stainless steel,
 - high corrosion resistant stainless steel,
- rebar sizes Ø8 to Ø32.

The steel element is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The rod or rebar is anchored by the bond between the steel element and concrete.

The product description is given in Annex A.

2. Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The performances given in this UK Technical Assessment are based on an assumed working life of the anchor of 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to static and quasi static loading, displacements	See Annex C1 to C13
Characteristic resistance to seismic performance category C1, displacements	See Annex C14 to C16
Characteristic resistance to seismic performance category C2, displacements	See Annex C17

3.2 Safety in case of fire (BWR 2)

Not relevant.

3.3 Health, hygiene and the environment (BWR 3)

Not relevant.

3.4 Safety and accessibility in use (BWR 4)

Not relevant.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

No performance assessed.

4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1 System of assessment and verification of constancy of performance

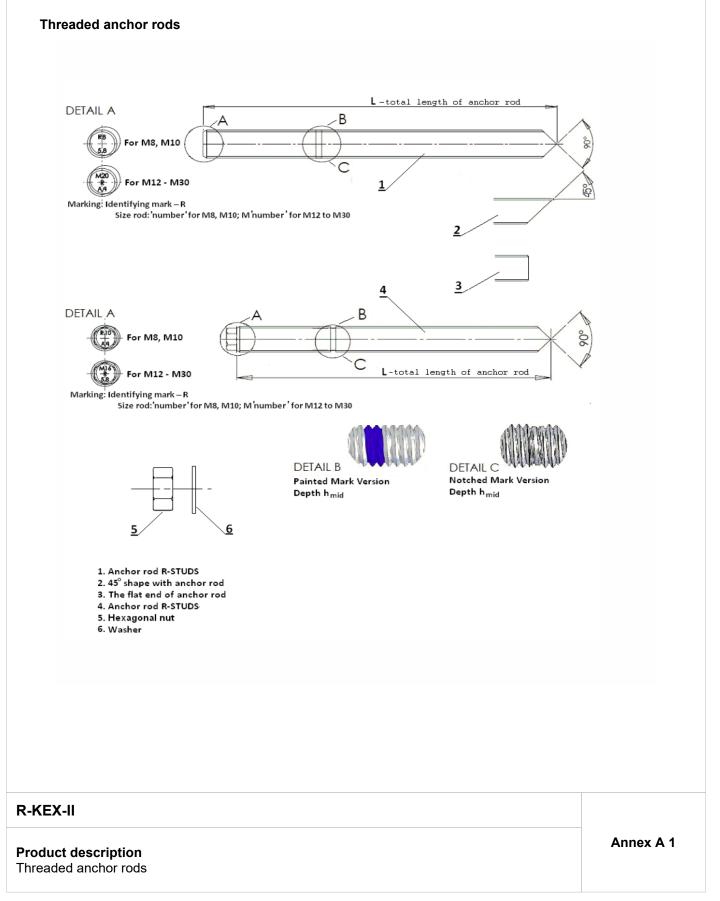
According to UKAD No. 330499-01-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011 as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

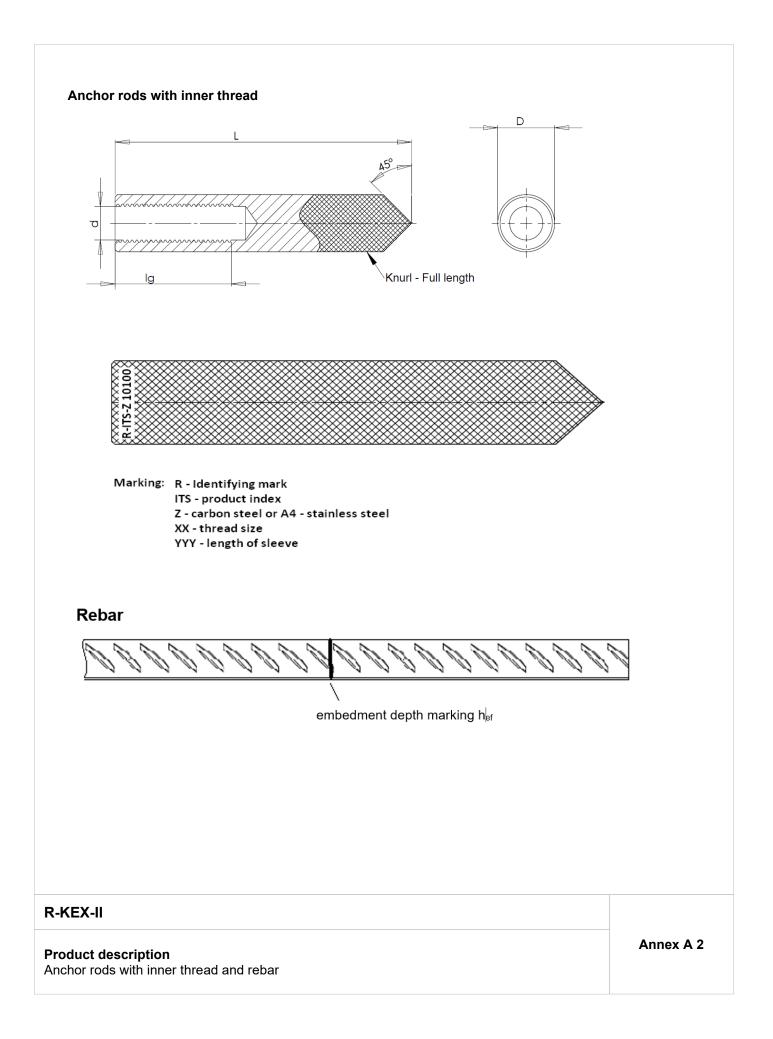
5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

5.1 UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance
- UKTA number.


On behalf of the British Board of Agrén	nent
	Bil
Date of Issue: 26 September 2022	Hardy Giesler Officer Chief Executive Officer



British Board of Agrément, 1st Floor Building 3 Hatters Lane Croxley Park Watford WD18 8YG

ANNEXES

These annexes apply to the product described in the main body of the UK Technical Assessment.

Table A1: Threaded rods

		Designation	
Part	Steel, zinc plated	Stainless steel	High corrosion resistance stainless steel (HCR)
Threaded rod	Steel, property class 5.8 to 12.9 acc. to EN ISO 898-1 electroplated $\ge 5 \ \mu m$ acc. to EN ISO 4042 or hot-dip galvanized $\ge 45 \ \mu m$ acc. to EN ISO 10684 or non-electrolytically applied zinc flake coating $\ge 8 \ \mu m$ acc. EN ISO 10683 elongation at fracture A ₅ > 8%	Steel 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506 Corrosion resistance class CRC III acc. to EN 1993-1- 4:2006+A1:2015 elongation at fracture A5 > 8%	Steel 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506 Corrosion resistance class CRC V acc. to EN 1993-1- 4:2006+A1:2015 elongation at fracture A5 > 8%
Hexagon nut	Steel, property class 5 to 12, acc. to EN ISO 898-2; electroplated $\ge 5 \ \mu m$ acc. to EN ISO 4042 or hot-dip galvanized $\ge 45 \ \mu m$ acc. to EN ISO 10684 or non-electrolytically applied zinc flake coating $\ge 8 \ \mu m$ acc. EN ISO 10683	Steel 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506 Corrosion resistance class CRC III acc. to EN 1993-1- 4:2006+A1:2015	Steel 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506 Corrosion resistance class CRC V acc. to EN 1993-1- 4:2006+A1:2015
Washer	Steel, acc. to EN ISO 7089; electroplated ≥ 5 μm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 μm acc. to EN ISO 10684 or non-electrolytically applied zinc flake coating ≥ 8 μm acc. EN ISO 10683	Steel 1.4401, 1.4404, 1.4571 acc. to EN 10088 Corrosion resistance class CRC III acc. to EN 1993-1- 4:2006+A1:2015	Steel 1.4529, 1.4565, 1.4547 acc. to EN 10088 Corrosion resistance class CRC V acc. to EN 1993-1- 4:2006+A1:2015

Commercial threaded rods (in the case of rods made of galvanized steel – standard rods with property class \leq 8.8 only), with:

- material and mechanical properties according to Table A1,

- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004; the documents shall be stored,
- marking of the threaded rod with the embedment depth.

Note: Commercial standard threaded rods made of galvanized steel with property class above 8.8 are not permitted in some Member States.

R-KEX-II

Product description Materials (1)

Annex A 3

Table A2: Rods with inner thread

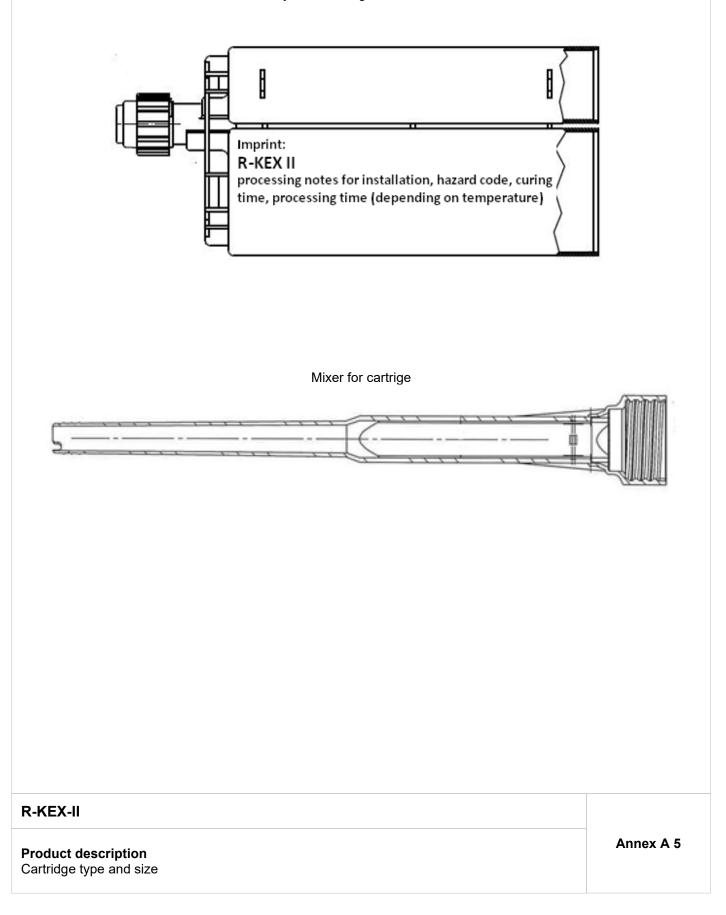
_	Designation					
Part	Steel, zinc plated	Stainless steel	High corrosion resistance stainless steel			
Rod with inner thread	Steel, property class 5.8 to 8.8 acc. to EN ISO 898-1 electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684 elongation at fracture A5 > 8%	Steel 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4- 80) acc. to EN ISO 3506 Corrosion resistance class CRC III acc. to EN 1993-1- 4:2006+A1:2015 elongation at fracture A5 > 8%	Steel 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506 elongation at fracture A5 > 8%			

Table A3: Reinforcing bars according to EN 1992-1-1, Annex C

Product form	Bars and de-	coiled rods		
Class	В	С		
Characteristic yield strength fyk or f0,2k [N.mm ⁻²]]	400 to	600	
Minimum value of $k = (f_t / f_y)_k$	≥ 1.08	≥ 1.15 < 1.35		
Characteristic strain at maximum force, ϵ_{uk} [%]	≥ 5.0	≥ 7.5		
Bendability		Bend / Rebend test		
Maximum deviation from nominal mass (individual bar) [%]	Nominal bar size [mm] ≤ 8 > 8	± 6. ± 4.		
Bond: minimum relative rib area, f _{R,min}	Nominal bar size [mm] 8 to 12 > 12	0.04		

Rib height: The maximum rib height is: $h_{rib} \le 0.07 \cdot \emptyset$

Table A4: Injection mortar


Product	Composition
R-KEX-II (two component injection mortar)	Epoxy system with fillers

R-KEX-II

Product description Materials (2)

Annex A 4

Side by side cartridge - 385 to 1100 ml

Specification of intended use

Anchors subject to:

Static and quasi-static loads: threaded rod size M8 to M30, rod with inner thread sizes M6/Ø10 to M16/Ø24 and rebar Ø8 to Ø32.

Seismic performance category C1: threaded rod size M8 to M30 and rebar Ø8 to Ø32. Seismic performance category C2: threaded rod size M12 to M24.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Cracked and uncracked concrete threaded rod size M8 to M30, and rebar Ø8 to Ø32.
- Uncracked concrete only rod with inner thread sizes M6/Ø10 to M16/Ø24.

Temperature ranges:

Installation temperature (temperature of substrate):

+5°C to +30°C.

In-service temperature:

- The anchors may be used in the following temperature range:
- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).

Use conditions (environmental conditions):

- Structures subject to dry internal conditions: all materials.
 - For all other conditions according to EN 1993-1-4 corresponding to corrosion resistance class (CRC):
 stainless steel A4 according to Annex A3, Table A1: CRC III,
- high corrosion resistance steel (HCR) according to Annex A3, Table A1: CRC V.

Design methods:

- Anchorages under static or quasi-static loads are designed in accordance to EN 1992-4:2018 and Technical Report TR 055.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EOTA Technical Report TR 045.
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

Installation:

- Dry or wet concrete (use category I1).
- Flooded holes (use category I2).
- Installation direction D3 (downward and horizontal and upwards installation).
- The anchors are suitable for hammer drilled holes or diamond core drilled holes.

R-KEX-II

Intended Use Specification

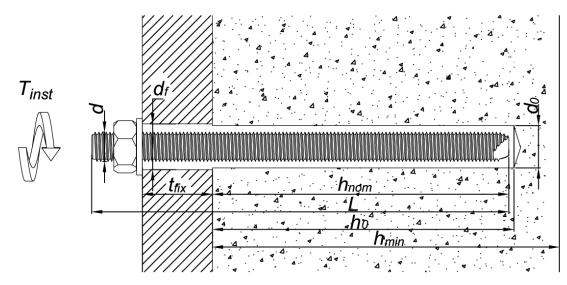
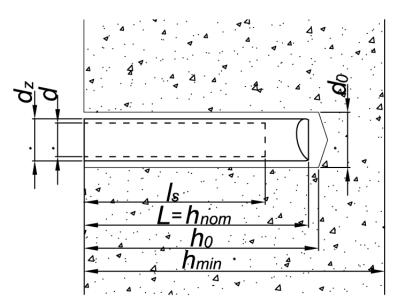



Table B1: Installation parameters – threaded anchor rod

Size		M8	M10	M12	M16	M20	M24	M30
Nominal drilling diameter	d₀ [mm]	10	12	14	18	22 or 24	28	35
Maximum diameter hole in the fixture	d _f [mm]	9	12	14	18	22	26	33
Effective	h _{ef,min} [mm]	60	70	80	100	120	140	165
embedment depth	h _{ef,max} [mm]	160	200	240	320	400	480	600
Depth of the drilling hole	h₀[mm]			ł	n _{ef} + 5 mn	1		
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef} + 3	0 mm; ≥ 1	100 mm		h _{ef} ·	+ 2d₀	
Maximum installation torque	Tinst,max [Nm]	10	20	40	80	120	180	200
Minimum spacing	s _{min} [mm]	40	40	40	50	60	70	85
Minimum edge distance	c _{min} [mm]	40	40	40	50	60	70	85

R-KEX-II

Intended Use Installation parameters (1)

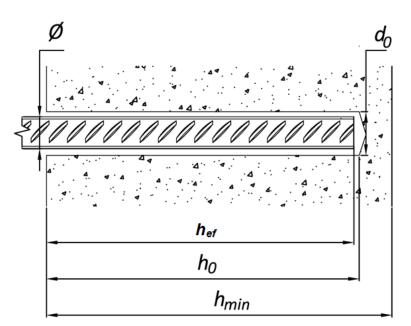


Table B2: Installation parameters – anchor rod with inner thread

Size		Ø10 Ø12/ Ø12/ Ø16/ Ø16/ Ø16/ Ø				M16/ Ø24/ 125		
Nominal drilling diameter	d₀ [mm]	12	14	14	20	20	20	28
Maximum diameter hole in the fixture	d _f [mm]	7	9	9	12	12	14	18
Effective embedment depth	h _{ef} = h _{nom} [mm]	75	75	90	75	100	100	125
Thread length, min	l₅[mm]	24	25	25	30 30 35		50	
Depth of the drilling hole	h₀[mm]	h _{ef} + 5 mm						
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef} + 30) mm; ≥ 1	00 mm		h _{ef} ∙	+ 2d ₀	
Maximum installation torque	Tinst,max [Nm]	3	5	5	10	10	20	40
Minimum spacing	s _{min} [mm]	40	40	50	40	50	50	70
Minimum edge distance	c _{min} [mm]	40	40	50	40	50	50	70

R-KEX-II

Intended Use Installation parameters (2)

Table B3: Installation parameters – rebar

Size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Nominal drilling diameter	d₀ [mm]	10 or 12	12 or 14	14 or 18	18	22	26	32	40
Effective	h _{ef,min} [mm]	60	70	80	80	100	120	140	165
embedment depth	h _{ef,max} [mm]	160	200	240	280	320	400	500	640
Depth of the drilling hole	h₀ [mm]	h _{ef} + 5 mm							
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef} + 30 mm; ≥ 100 mm h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	40	40	40	50	60	70	85
Minimum edge distance	c _{min} [mm]	40	40	40	40	50	60	70	85

R-KEX-II

Intended Use Installation parameters (3)

Table B4: Maximum processing time and minimum curing time


R-KEX-II								
Mortar temperature [°C]	Concrete (substrate) temperature [°C]	Maximum processing time [min.]	Minimum curing time ¹⁾ [min.]					
+5	+5	150	2880					
+10	+10	120	1080					
+20	+20	35	480					
+25	+30	12	300					


¹⁾ The minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer). Minimum mortar temperature for installation +5°C; maximum mortar temperature for installation +25°C. For wet condition and flooded holes the curing time must be doubled.

R-KEX-II

Intended Use

Maximum processing time and minimum curing time

Table B5: Brush diameter for threaded rod

Threaded rod diameter		M8	M10	M12	M16	M20	M24	M30	
d⊾	Brush diameter	[mm]	12	14	16	20	26	30	37

Table B6: Brush diameter for rod with inner thread

	Threaded rod diame	eter	M6/Ø10	M8/Ø12	M10/Ø16	M12/ Ø16	M16/Ø24
db	Brush diameter	[mm]	16	16	22	22	30

Table B7: Brush diameter for rebar

	Rebar diameter		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
db	Brush diameter	[mm]	14	16	20	20	24	28	37	42

Table B8: Dosing plug diameter

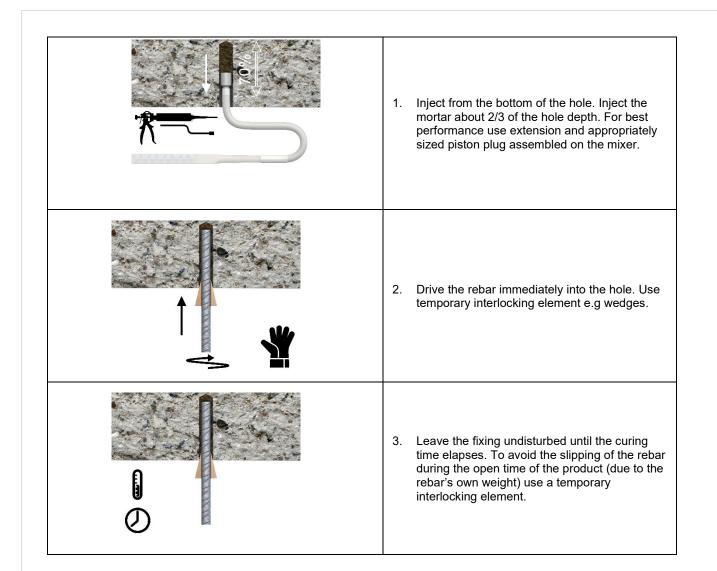
Hole diameter [mm]	16	18	20	22	24	25	26	28	30	32	35	40	50
Dosing plug R-NOZ-P diameter	Ø16	Ø18		0 to 22	Ø2	24 to Ø	26	Ø28	Ø30	to 32	Ø35	Ø40	Ø50

R-KEX-II

Intended Use Tools (3)

1.	1. Hole drilling.
a. b.	 a. Hammer drilling. Drill hole to the required diameter and depth using a rotary hammer drilling machine. b. Diamond core drilling.
2.	Drill hole to the required diameter and depth using a diamond core drilling machine and the corresponding core bit.2. Hole cleaning.
a.	 a. Manual cleaning with brush and hand pump for hammer drilled hole: – starting from the drill hole bottom blow the hole at least 4 times using the hand pump, – using the specified brush, mechanically brush out the hole at least 4 times,
	 starting from the drill hole bottom, blow at least 4 times with the hand pump. b. Cleaning hole, diamond drilling, with compressed air: flush the hole from the bottom with water at least 2 times,
	 using the specified brush, mechanically brush out the hole at least 3 times, starting from the drill hole bottom, blow at least 2 times with the hand pump.
	 Insert cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained (min. 10 cm).
1. 	4. Insert the mixing nozzle to the far end of the hole and inject mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth.
5.	 Immediately insert the threaded rod, slowly and with slight twisting motion. Remove any excess mortar around the hole before it sets.
6.	 Leave the fixing undisturbed until the curing time elapses.
7.	7. Attach fixture and tighten the nut to the required torque. The installation torque cannot exceed T _{inst,max} .

Intended Use Installation instruction – threaded rod


1. a. b.	 Hole drilling. Hammer drilling. Drill hole to the required diameter and depth using a rotary hammer drilling machine. Diamond core drilling. Drill hole to the required diameter and depth using a diamond core drilling machine and the corresponding core bit
2. a. b.	 2. Hole cleaning. a. Manual cleaning with brush and hand pump for hammer drilled hole: starting from the drill hole bottom blow the hole at least 4 times using the hand pump, using the specified brush, mechanically brush out the hole at least 4 times, starting from the drill hole bottom, blow at least 4 times with the hand pump. b. Cleaning hole, diamond drilling, with compressed air: flush the hole from the bottom with water at least 2 times, using the specified brush, mechanically brush out the hole at least 3 times,
3.	with the hand pump. 3. cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained (min. 10 cm).
4.	4. Insert the mixing nozzle to the far end of the hole and inject mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth.
5. ↓ → ↓	5. Immediately insert the rod with inner thread, slowly and with slight twisting motion. Remove any excess mortar around the hole before it sets.
6. Ø	6. Leave the fixing undisturbed until the curing time elapses.
7.	7. Attach fixture and tighten the bolt to the required torque. The installation torque cannot exceed T _{inst,max} .

Intended Use

Installation instruction – anchor rod with inner thread

1.	1. Hole drilling.
a. b.	-
a. D.	a. Hammer drilling.
	Drill hole to the required diameter and depth using a rotary hammer drilling machine.
	b. Diamond core drilling.
- mance	-
	Drill hole to the required diameter and depth using a diamond core drilling machine and the
	corresponding core bit
2.	2. Hole cleaning.
a.	a. Manual cleaning with brush and hand pump for
19 mg 19 mg 19 mg	hammer drilled hole:
x4 x4	 starting from the drill hole bottom blow the hole at
and the second second second	least 4 times using the hand pump,
	 using the specified brush, mechanically brush out
С.	the hole at least 4 times,
	 starting from the drill hole bottom, blow at least 4
	times with the hand pump.
	b. Cleaning hole, diamond drilling, with compressed
	air:
	 – flush the hole from the bottom with water at least
	2 times,
	 using the specified brush, mechanically brush out
	the hole at least 3 times,
	 starting from the drill hole bottom, blow at least 2
	times with the hand pump.
3.	3. Insert cartridge into dispenser and attach nozzle.
	Dispense to waste until even colour is obtained (min.
to le	10 cm).
	,
A	A lung set the universe permits to the few and of the hole and
4.	4. Insert the mixing nozzle to the far end of the hole and
	inject mortar, slowly withdrawing the nozzle as the hole
	is filled to 2/3 of its depth.
.70%	
X	
5.	5. Immediately insert the rebar, slowly and with slight
	twisting motion. Remove any excess mortar around the
\rightarrow	
	hole before it sets.
6.	6. Leave the fixing undisturbed until the curing time
	elapses.
Ø	

Intended Use Installation instruction – rebar

Intended Use

Installation instruction – rebar – overhead installation

Size			M8	M10	M12	M16	M20	M24	M30	
Steel failure										
Steel, property class 5.8										
Characteristic resistance	N _{Rk,s}	[kN]	18	29	42	78	122	176	280	
Partial safety factor ¹⁾	γMs	[-]				1.50				
Steel, property class 8.8	1110									
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	126	196	282	449	
Partial safety factor ¹⁾	γMs	[-]				1.50				
Steel, property class 10.9	1110									
Characteristic resistance	N _{Rk,s}	[kN]	37	58	84	157	245	353	561	
Partial safety factor ¹⁾	γMs	[-]	-			1.40				
Steel, property class 12.9	1110					-				
Characteristic resistance	N _{Rk,s}	[kN]	44	70	101	188	294	424	673	
Partial safety factor ¹⁾	γMs	[-]				1.40				
Stainless steel, property class A4-70	11/13									
Characteristic resistance	N _{Rk,s}	[kN]	26	41	59	110	171	247	393	
Partial safety factor ¹⁾	γMs	[-]	-			1.87				
Stainless steel, property class A4-80	TWIS	LJ								
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	126	196	282	448	
Partial safety factor ¹⁾	γMs	[-]				1.60				
High corrosion resistant stainless stee										
Characteristic resistance	N _{Rk,s}	[kN]	25	40	59	110	171	247	393	
Partial safety factor ¹⁾	γMs	[-]				1.87				
Combined pull-out and concrete co	one failure in un		rete C20	/25 – ha	mmer dr		orkina li	fe 50 vea	ars	
•										
Temperature range I: 40°C/24°C	TRk,ucr,50	[N.mm ⁻²]	17.0	16.0	17.0	15.0	15.0	13.0	12.0	
Temperature range II: 80ºC/50ºC	$\tau_{\rm Rk,ucr,50}$	[N.mm ⁻²]	15.0	14.0	15.0	13.0	13.0	12.0	10.0	
Combined pull-out and concrete co years	one failure in un	cracked conc	rete C20)/25 – dia	amond c	ore drilli	ng, work	king life	50	
Temperature range I: 40°C/24°C	$\tau_{\rm Rk,ucr,50}$	[N.mm ⁻²]	14.0	15.0	16.0	14.0	14.0	12.0	11.0	
Temperature range II: 80°C/50°C	τ _{Rk,ucr,50}	[N.mm ⁻²]	12.0	14.0	14.0	13.0	13.0	11.0	10.0	
Factors – working life 50 years										
¥		C30/37				1.04				
Increasing factor	ψc	C40/50				1.07				
-		C50/60				1.09				
Sustained load factor for $\tau_{Rk,ucr.50}$	0	40°C/24°C				0.75				
in uncracked concrete	ψ^0 sus,50	80°C/50°C				0.72				
Combined pull-out and concrete co	one failure in un	cracked conc	rete C20	/25 – ha	mmer dr	illing, w	orking li	fe 100 ye	ears	
Temperature range I: 40°C/24°C	τ _{Rk,ucr,100}	[N.mm ⁻²]	17.0	16.0	17.0	15.0	15.0	13.0	12.0	
Temperature range II: 80°C/50°C	TRk,ucr,100	[N.mm ⁻²]	15.0	14.0	15.0	13.0	13.0	12.0	10.0	
Combined pull-out and concrete co	one failure in un	cracked conc	rete C20	/25 – dia	amond c	ore drilli	ng, work	king life	100	
Temperature range I: 40°C/24°C	τ _{Rk,ucr,100}	[N.mm ⁻²]	14.0	15.0	16.0	14.0	14.0	12.0	11.0	
Temperature range II: 80°C/50°C	TRk,ucr,100	[N.mm ⁻²]	12.0	14.0	14.0	13.0	13.0	11.0	10.0	
Factors – working life 100 years					l			l	<u> </u>	
		C30/37				1.04				
	1	1	1.07							
Increasing factor	Ψc	C40/50				1.07				

Table C1-1: Characteristic resistance under tension load for threaded rod in uncracked concrete – static and quasi-static loads

¹⁾ In the absence of other national regulations

R-KEX-II

Performances

Characteristic resistance under tension loads in uncracked concrete – threaded rod

Size			M8	M10	M12	M16	M20	M24	M30
Concrete cone failure in uncra	cked concrete								
Factor for uncracked concrete	Kucr,N	[-]				11.0			
Edge distance	Ccr,N	[mm]	1.5 ⋅ h _{ef} 3.0 ⋅ h _{ef}						
Spacing	S _{cr,N}	[mm]							
Splitting failure									
	c _{cr,sp} for h _{min}				$2.0 \cdot h_e$	f		1,5	· h _{ef}
Edge distance	$\begin{array}{c} c_{cr,sp} \text{ for} \\ h_{min} < h^{\ 1)} < 2 \cdot h_{ef} \\ (c_{cr,sp} \text{ from linear} \\ interpolation) \\ \hline c_{cr,sp} \text{ for } h^{\ 1)} \ge 2 \cdot \\ h_{ef} \end{array}$	[mm]			2 x h _{ef} h _{min}	c _{or.Np}	C _{cr,sp}		
Spacing	S _{cr,sp}	[mm]				2.0 · c _{cr,s}	p.		
Installation safety factors for c	ombined pull-out, co	ncrete co	ne and s	splitting	failure				
Installation safety factor for in use category I1		1 1				1.0			
Installation safety factor for in use category I2	γinst	[-]				1.2			

Table C1-2: Characteristic resistance under tension load for threaded rod in uncracked concrete – static and quasi-static loads

¹⁾ h – concrete member thickness.

R-KEX-II

Performances

Characteristic resistance under tension loads in uncracked concrete – threaded rod

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure									
Steel, property class 5.8									
Characteristic resistance	N _{Rk.s}	[kN]	18	29	42	78	122	176	280
Partial safety factor ¹⁾	γMs	[-]		_0		1.50			
Steel, property class 8.8	1110								
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	125	196	282	448
Partial safety factor ¹⁾	γMs	[-]	1			1.50			
Steel, property class 10.9									
Characteristic resistance	N _{Rk,s}	[kN]	36	58	84	157	245	353	561
Partial safety factor ¹⁾	γMs	[-]				1.40			
Steel, property class 12.9									
Characteristic resistance	N _{Rk,s}	[kN]	43	69	101	188	294	423	673
Partial safety factor ¹⁾	γMs	[-]				1.40			
Stainless steel, property class A4-70									
Characteristic resistance	N _{Rk,s}	[kN]	25	40	59	109	171	247	392
Partial safety factor ¹⁾	γMs	[-]				1.87			
Stainless steel, property class A4-80	L								
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	125	196	282	448
Partial safety factor ¹⁾	γMs	[-]				1.60			
High corrosion resistant stainless ste									
Characteristic resistance	N _{Rk,s}	[kN]	25	40	59	109	171	247	392
Partial safety factor ¹⁾	γMs	[-]				1.87			
Combined pull-out and concrete co	one failure in cra	acked concre	te C20/2	5 – hamı	mer drilli	ng, worl	king life	50 years	
Temperature range I: 40°C/24°C	τ _{Rk,cr,50}	[N.mm ⁻²]	8.0	8.0	7.0	7.0	7.0	6.0	5.0
Temperature range II: 80°C/50°C	τ _{Rk,cr,50}	[N.mm ⁻²]	7.0	7.0	6.0	6.0	6.0	5.0	4.0
Combined pull-out and concrete co	one failure in cra	acked concre	te C20/2	5 – diam	ond core	e drilling	, workin	g life 50	years
Temperature range I: 40°C/24°C	τ _{Rk,cr,50}	[N.mm ⁻²]	5.5	7.0	8.0	7.0	8.0	7.0	4.0
Temperature range II: 80°C/50°C	τ _{Rk,cr,50}	[N.mm ⁻²]	5.0	6.5	7.5	6.5	7.0	6.5	3.5
Factors – working life 50 years		I							
		C30/37				1.04			
Increasing factor	ψc	C40/50				1.07			
Combined will put and compared a	ana falluna in an	C50/60	ta 000/0	F b a w a		1.09		400	_
Combined pull-out and concrete co	one failure in cra						ang lite		5
Temperature range I: 40°C/24°C	τ _{Rk,cr,100}	[N.mm ⁻²]	8.0	8.0	6.5	7.0	7.0	6.0	5.0
Temperature range II: 80°C/50°C	τ _{Rk,cr,100}	[N.mm ⁻²]	6.5	7.0	6.0	6.0	6.0	5.0	4.0
Combined pull-out and concrete co	one failure in cra	acked concre	te C20/2	5 – diam	ond core	e drilling	, workin	g life 100	years
Temperature range I: 40°C/24°C	τ _{Rk,cr,100}	[N.mm ⁻²]	5.5	7.0	8.0	7.0	7.0	6.0	4.0
Temperature range II: 80°C/50°C	τ _{Rk,cr,100}	[N.mm ⁻²]	5.0	6.5	7.0	6.0	6.5	5.0	3.5
Factors – working life 100 years									
		C30/37				1.00			
Increasing factor	ψ_c	C40/50				1.00			
		C50/60				1.00			

Table C2-1: Characteristic resistance under tension loads for threaded rod in cracked concrete – static and quasi-static loads

¹⁾ In the absence of other national regulations.

R-KEX-II

Performances

Characteristic resistance under tension loads in cracked concrete – threaded rod

Table C2-2: Characteristic resistance under tension load for threaded rod in cracked concrete – static and quasi-static loads

Size			M8	M10	M12	M16	M20	M24	M30
Concrete cone failure in crack	ed concrete			1				1	
Factor for cracked concrete	k _{cr,N}	[-]				7.7			
Edge distance	Ccr,N	[mm]	1.5 · h _{ef}						
Spacing	S _{cr,N}	[mm]	3.0 · h _{ef}						
Splitting failure									
	c _{cr,sp} for h _{min}				$2.0 \cdot h_{e}$	f		1,5	· h _{ef}
Edge distance	$\begin{array}{c} c_{cr,sp} \text{ for} \\ h_{min} < h^{\ 1)} < 2 \cdot h_{ef} \\ (c_{cr,sp} \text{ from linear} \\ interpolation) \\ \hline c_{cr,sp} \text{ for } h^{\ 1)} \ge 2 \cdot \\ h_{ef} \end{array}$	[mm]	2 x h _{ef} h _{min} c _{cr.Np} c _{cr.sp}						
Spacing	S _{cr,sp}	[mm]				2.0 · c _{cr,s}	sp		
Installation safety factors for	combined pull-out, co	ncrete co	ne and s	splitting	failure				
Installation safety factors for in use category I1		F 1				1.0			
Installation safety factors for in use category I2	γinst	[-]	1.2						

¹⁾ h – concrete member thickness

R-KEX-II

Performances

Characteristic resistance under tension loads in cracked concrete – threaded rod

Table C3: Characteristic resistance under tension load for rod with inner thread in uncracked concrete – static and quasi-static loads

Size			M6 /Ø10	M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24			
Steel failure										
Steel, property class 5.8										
Characteristic resistance	N _{Rk,s}	[kN]	10	18	29	42	78			
Partial safety factor 1)	γMs	[-]			1.50					
Steel, property class 8.8										
Characteristic resistance	N _{Rk,s}	[kN]	16	29	46	67	125			
Partial safety factor 1)	γMs	[-]			1.50					
Stainless steel, property class A	4-70									
Characteristic resistance	N _{Rk,s}	[kN]	14	25	40	59	109			
Partial safety factor ¹⁾	γMs	[-]			1.87					
Stainless steel, property class A	4-80									
Characteristic resistance	N _{Rk,s}	[kN]	16	29	46	67	125			
Partial safety factor ¹⁾	γMs	[-]			1.60					
High corrosion resistant stainles	s steel, property class			1	Г	F	1			
Characteristic resistance	N _{Rk,s}	[kN]	14	25	40	59	109			
Partial safety factor 1)	γMs	[-]			1.87					
Combined pull-out and concre	ete cone failure in un	1	ncrete C20	0/25 – hami	mer drilling					
Temperature range I:	TRk,ucr,50	[N.mm ⁻	8.0	12.0	12.0	11.0	10.0			
40°C/24°C	rk,uci,30	2]	0.0	12.0	12.0	11.0	10.0			
Temperature range II:	TRk,ucr,50	[N.mm ⁻	7.5	11.0	11.0	10.0	9.0			
80°C/50°C	UTK, UCI, 50	²]	1.0	1110		10.0	0.0			
		C30/37			1.04					
Increasing factor	Ψc	C40/50			1.07					
Quatained lead factor for		C50/60			1.09					
Sustained load factor for	0	40°C/24°C			0.75					
TRk,ucr,50	Ψ^0 sus,50	80°C/50°C			0.72					
in uncracked concrete										
Resistance to concrete cone f		1 1	ammer dr	illing	44.0					
Factor for uncracked concrete	K _{ucr,N}	[-]			11.0					
Edge distance	Ccr,N	[mm]			1.5 · h _{ef}					
Spacing	Scr,N	[mm]			3.0 · h _{ef}					
Splitting failure		T T								
	c _{cr,sp} for h _{min}			2.0	· h _{ef}		1,5 · h _{ef}			
	c _{cr,sp} for									
	$h_{min} < h^{2} < 2 \cdot h_{ef}$			2 x I						
Edge distance	(c _{cr,sp} from linear	[mm]								
	interpolation)			h _n	nin C _{cr,Np} C _{cr}	sp				
	$c_{cr,sp}$ for $h^{(2)} \ge 2$.	1								
	hef				Ccr,N					
Spacing	S _{cr,sp}	[mm]			2.0 · c _{cr,sp}					
Installation safety factors for o			e and spli	itting failur						
Installation safety factors for			o una opi	anig failul						
use category 11			1.2							
Installation safety factors for	γinst	[-]			4.0					
use category I2				1.2						

²⁾ h – concrete member thickness.

R-KEX-II

Performances

Characteristic resistance under tension loads in uncracked concrete – rod with inner thread

and quasi-stati	ic loads										
Size				Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Steel failure				1							
Characteristic resistance	NRI	K,S	[kN]					• f _{uk}			
Partial safety factor ¹⁾	γм		[-]				,	40			
Combined pull-out and concrete	cone failure	in uncı	racked cond	crete C2	20/25 – I	nammei	r drilling	g, worki	ng life 5	50 years	\$
Temperature range I: 40°C/24°C	τ _{Rk,uc}	cr,50	[N.mm ⁻²]	11.0	12.0	12.0	10.0	12.0	12.0	9.5	8.5
Temperature range II: 80°C/50°C	$\tau_{\rm Rk,uc}$	cr,50	[N.mm ⁻²]	10.0	11.0	11.0	9.0	11.0	11.0	8.5	7.5
Combined pull-out and concrete	cone failure	in uncı	racked cond	crete C2	20/25 – 0	diamon	d core d	drilling,	working	g life 50	year
Temperature range I: 40°C/24°C	$ au_{Rk,ud}$	cr,50	[N.mm ⁻²]	9.5	11.0	10.0	10.0	10.5	11.0	9.0	8.0
Temperature range II: 80°C/50°C	τ _{Rk,uc}	cr,50	[N.mm ⁻²]	8.5	10.0	9.0	9.0	9.0	10.0	8.0	7.0
Factors – working life 50 years	L										
			C30/37				1,	04			
Increasing factor	Ψα	c	C40/50					07			
			C50/60					09			
Combined pull-out and concrete	cone failure	in uncı	racked cond	crete C2	20/25 – 1	nammei	r drilling	g, worki	ng life 1	100 yea	rs
Temperature range I: 40°C/24°C	τ _{Rk,uc}	r,100	[N.mm ⁻²]	11.0	12.0	12.0	10.0	12.0	12.0	9.5	8.5
Temperature range II: 80°C/50°C	τ _{Rk,uc}		[N.mm ⁻²]	10.0	11.0	11.0	9.0	11.0	11.0	8.5	7.5
Combined pull-out and concrete years	cone failure	in uncı	racked cond	crete C2	20/25 – 0	diamon	d core o	drilling,	working	g life 10	0
Temperature range I: 40°C/24°C	τ _{Rk,uc}	r,100	[N.mm ⁻²]	9.5	11.0	10.0	10.0	10.5	11.0	9.0	8.0
Temperature range II: 80°C/50°C	τ _{Rk,uc}	r,100	[N.mm ⁻²]	8.5	10.0	9.0	9.0	9.0	10.0	8.0	7.0
Factors – working life 100 years											
			C30/37					04			
Increasing factor	Ψα	D	C40/50					07			
<u> </u>			C50/60					09			
Sustained load factor for $\tau_{Rk,ucr,50}$	Ψ^0 sus	- FO	40°C/24°C					75			-
n uncracked concrete		\$,50	80°C/50°C				0.	72			
Concrete cone failure in uncrack	ked concrete		-1	1							
Factor for uncracked concrete	k _{ucr,N}		[-]					1.0			
Edge distance	C _{cr,N}		[mm]					· h _{ef}			-
Spacing	S _{cr,N}		[mm]				3.0	· h _{ef}			
Splitting failure	1		Т	1						[
	c _{cr,sp} for h	ו _{min}				2,0	∙ h _{ef}			1,5	· h _{ef}
	$c_{cr,sp}$ for $h_{min} < h^{2} <$										
Edge distance	(c _{cr,sp} from I		[mm]				2 x h _{ef}				
5	interpolat	ion)					ⁿ min L (cr.Np C _{Cr.sp}			
	c _{cr,sp} for h ²	· ≥ 2 ·					Co	xr,N			
	h _{ef}										
Spacing	S _{cr,sp}		[mm]				2.0 ·	C _{cr,sp}			
Installation safety factors for cor		out, cor	ncrete cone	and sp	litting fa	ailure		0			
Installation safety factors for use ca		γinst	[-]					.2			
Installation safety factors for use ca		1.1131					1	.2			
¹⁾ In the absence of other national											
²⁾ h – concrete member thickness.											
³⁾ Stressed cross section of the ste	el.										

Table C4: Characteristic resistance under tension load for rebar in uncracked concrete – static and quasi-static loads

R-KEX-II

Performances

Characteristic resistance under tension loads in uncracked concrete – rebar

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Steel failure			~~	~	~	~	~	~	~	~~
Characteristic resistance	N _{Rk,s}	[kN]				A _s ³⁾	• f _{uk}			
Partial safety factor ¹⁾	γMs	[-]					40			
Combined pull-out and concrete	cone failure in crac	ked concre	te C20/	25 – ha	mmer d	rilling, v	working	life 50	years	1
Temperature range I: 40°C/24°C	$\tau_{\rm Rk,cr,50}$	[N.mm ⁻²]	5.5	5.0	5.5	5.5	5.0	5.0	5.4	4.0
Temperature range II: 80ºC/50ºC	$\tau_{\rm Rk,cr,50}$	[N.mm ⁻²]	5.0	4.5	5.0	5.0	4.5	4.5	5.0	3.0
Combined pull-out and concrete	cone failure in crac	ked concre	te C20/	25 – dia	amond o	ore dri	lling, w	orking l	ife 50 y	ears
Temperature range I: 40°C/24°C	$\tau_{\rm Rk,cr,50}$	[N.mm ⁻²]	5.5	5.5	6.0	6.0	5.0	5.5	4.5	4.0
Temperature range II: 80°C/50°C	$\tau_{\rm Rk,cr,50}$	[N.mm ⁻²]	5.0	5.0	5.5	5.5	4.5	5.0	4.0	4.0
Factors – working life 50 years		i.								
ncreasing factor	$\psi_{c} \qquad \qquad \frac{C30/37}{C40/50} \qquad \qquad \frac{1.04}{1.07} \\ \frac{C40/50}{C50/60} \qquad \qquad 1.09$									
Combined pull-out and concrete	cone failure in crac		to C20/	25 <u>–</u> ha	mmor d			ulifo 100	lvoare	
Temperature range I: 40°C/24°C	τ _{Rk,cr,100}	[N.mm ⁻²]	5.5	5.0	5.5	5.5	5.0	5.0	5.4	4.0
Temperature range II: 80°C/50°C		[N.mm ⁻²]	5.0	4.5	5.0	5.0	4.5	4.5	5.0	3.0
1 0	τ _{Rk,cr,100}			-			_	-		
Combined pull-out and concrete	cone failure in crac	ked concre	te C20/	25 – dia	amond o	core dri	lling, w	orking l	ite 100 y	years
Temperature range I: 40°C/24°C	τ _{Rk,cr,100}	[N.mm ⁻²]	5.5	5.5	6.0	6.0	5.0	5.0	4.5	4.0
Temperature range II: 80°C/50°C	τ _{Rk,cr,100}	[N.mm ⁻²]	5.0	5.0	5.5	5.5	4.5	4.5	4.0	4.0
Factors – working life 100 years		T	r							
Increasing factor	Ψc	C30/37 C40/50 C50/60				1.	04 07 09			
Concrete cone failure in cracked	concrete	000/00					00			
Factor for cracked concrete	k _{cr,N}	[-]				7	.7			
Edge distance	C _{cr,N}	[mm]					· h _{ef}			
Spacing	S _{cr,N}	[mm]					· h _{ef}			
Splitting failure										
	$c_{\text{cr,sp}}$ for h_{min}				2.0	$\cdot {\sf h}_{\sf ef}$			1.5	$\cdot h_{ef}$
Edge distance	$\begin{array}{c} c_{cr,sp} \text{ for} \\ h_{min} < h^{2} > 2 \cdot h_{ef} \\ (c_{cr,sp} \text{ from linear} \\ interpolation) \\ \hline c_{cr,sp} \text{ for } h^{2} \ge 2 \cdot h_{ef} \end{array}$	[mm] $2 \times h_{eff}$								
Spacing	[mm]					cr,N C _{cr,sp}				
Partial safety factor for combined	S _{cr,sp}		plitting	failure		_,0	-or,ap			
Installation safety factors for in use category I1	nstallation safety factors for in use					1	.2			
Installation safety factors for in use γ_{inst} ategory I2		[-]	<u> </u>			1	.2			
⁽¹⁾ In the absence of other national i ⁽²⁾ $h - concrete$ member thickness	regulations	1	1							

Table C5: Characteristic resistance under tension loads for rebar in cracked concrete – static and quasi-static loads

³⁾ Stressed cross section of the steel element

R-KEX-II

Performances

Characteristic resistance under tension loads in cracked concrete – rebar

Table C6: Characteristic resistance for shear loads for threaded rod – steel failure without lever arm

Size			M8	M10	M12	M16	M20	M24	M30
Steel, property class 5.8			<u> </u>				<u> </u>		
Characteristic resistance	V _{Rk,s}	[kN]	9	14	21	39	61	88	140
Factor considering ductility	k 7	[-]				0,8			
Partial safety factor ¹⁾	γMs	[-]				1.25			
Steel, property class 8.8	.								
Characteristic resistance	V _{Rk,s}	[kN]	15	23	34	63	98	141	224
Factor considering ductility	k 7	[-]				0.8			
Partial safety factor ¹⁾	γMs	[-]				1.25			
Steel, property class 10.9	.								
Characteristic resistance	V _{Rk,s}	[kN]	18	29	42	78	122	176	280
Factor considering ductility	k 7	[-]				0.8			
Partial safety factor ¹⁾	γMs	[-]	1.50						
Steel, property class 12.9	.								
Characteristic resistance	V _{Rk,s}	[kN]	22	35	51	94	147	212	336
Factor considering ductility	k 7	[-]				0.8			
Partial safety factor ¹⁾	γMs	[-]				1.50			
Stainless steel, property class A4-70)								
Characteristic resistance	V _{Rk,s}	[kN]	13	20	29	55	86	124	196
Factor considering ductility	k 7	[-]				0.8			
Partial safety factor ¹⁾	γMs	[-]				1.56			
Stainless steel, property class A4-80)								
Characteristic resistance	V _{Rk,s}	[kN]	15	23	34	63	98	141	224
Factor considering ductility	k 7	[-]				0.8			
Partial safety factor ¹⁾	γMs	[-]				1.33			
High corrosion resistant stainless st	teel, property class	70							
Characteristic resistance	V _{Rk,s}	[kN]	13	20	29	55	86	124	196
Factor considering ductility	k 7	[-]				0.8			
Partial safety factor ¹⁾	γMs	[-]				1.56			

¹⁾ In the absence of other national regulations.

R-KEX-II

Performances

Characteristic resistance under shear loads in cracked and uncracked concrete – threaded rod

Size			M8	M10	M12	M16	M20	M24	M30
Steel, property class 5.8									
Characteristic resistance	M ⁰ Rk,s	[Nm]	19	37	65	166	324	561	1124
Partial safety factor ¹⁾	γMs	[-]				1.25			
Steel, property class 8.8									
Characteristic resistance	M ⁰ Rk,s	[Nm]	30	60	105	266	519	898	1799
Partial safety factor ¹⁾	γMs	[-]				1.25			
Steel, property class 10.9									
Characteristic resistance	M ⁰ Rk,s	[Nm]	37	75	131	333	649	1123	2249
Partial safety factor ¹⁾	γMs	[-]				1.50			
Steel, property class 12.9									
Characteristic resistance	M ⁰ Rk,s	[Nm]	45	90	157	400	779	1347	2698
Partial safety factor ¹⁾	γMs	[-]				1.50			
Stainless steel, property class A4-70									
Characteristic resistance	M ⁰ Rk,s	[Nm]	26	52	92	233	454	786	1574
Partial safety factor ¹⁾	γMs	[-]				1.56			
Stainless steel, property class A4-80									
Characteristic resistance	M ⁰ Rk,s	[Nm]	30	60	105	266	519	898	1799
Partial safety factor ¹⁾	γMs	[-]				1.33			
High corrosion resistant stainless steel	, property class	70							
Characteristic resistance	M ⁰ Rk,s	[Nm]	26	52	92	233	454	786	1574
Partial safety factor ¹⁾	γMs	[-]				1.56			
1) In the channes of other notional regulation			-	-		-		-	

¹⁾ In the absence of other national regulations.

Table C8: Characteristic resistance under shear loads – pry out and concrete edge failure for threaded rod

Size			M8	M10	M12	M16	M20	M24	M30
Pry out failure									
Factor	k ₈	[-]				2			
Concrete edge failure									
Outside diameter of anchor	d_{nom}	[mm]	8	10	12	16	20	24	30
Effective length of anchor under shear loading	lf	[mm]	min (h _{ef} ; 12d _{nom})						min (h _{ef} ; 8d _{nom})

R-KEX-II

Performances

Characteristic resistance under shear loads in cracked and uncracked concrete – threaded rod

Table C9: Characteristic resistance under shear loads for rod with inner thread – steel failure without lever arm

Size			M6/ Ø10	M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24
Steel, property class 5.8							
Characteristic resistance	V _{Rk,s}	[kN]	5.0	9.2	14.5	21.1	39.3
Factor considering ductility	k ₇	[-]			0.8		
Partial safety factor ¹⁾	γMs	[-]			1.25		
Steel, property class 8.8	· · ·						
Characteristic resistance	V _{Rk,s}	[kN]	8.0	14.6	23.2	33.7	62.8
Factor considering ductility	k ₇	[-]			0.8		
Partial safety factor ¹⁾	γ́Ms	[-]			1.25		
Stainless steel, property class A4-70							
Characteristic resistance	V _{Rk,s}	[kN]	7.0	12.8	20.3	29.5	55.0
Factor considering ductility	k ₇	[-]			0.8		
Partial safety factor ¹⁾	γMs	[-]			1.56		
Stainless steel, property class A4-80							
Characteristic resistance	V _{Rk,s}	[kN]	8.0	14.6	23.2	33.7	62.8
Factor considering ductility	k ₇	[-]			0.8		
Partial safety factor ¹⁾	γ́Ms	[-]			1.33		
High corrosion resistant stainless sto	eel, property class 70						
Characteristic resistance	V _{Rk,s}	[kN]	7.0	12.8	20.3	29.5	55.0
Factor considering ductility	k7	[-]			0.8		
Partial safety factor 1)	γMs	[-]			1.56		

¹⁾ In the absence of other national regulations.

Table C10: Characteristic resistance under shear loads for rod with inner thread – steel failure with lever arm

Size			M6/ Ø10	M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24
Steel, property class 5.8							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	7.6	18.7	37.4	65.5	166.5
Partial safety factor ¹⁾	γ́Ms	[-]			1.25		
Steel, property class 8.8							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	12.2	30.0	59.8	104.8	266.4
Partial safety factor ¹⁾	ÝМs	[-]			1.25		
Stainless steel, property class A4-70							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	10.7	26.2	52.3	91.7	233.1
Partial safety factor ¹⁾	ÝМs	[-]			1.56		
Stainless steel, property class A4-80							
Characteristic resistance	M⁰ _{Rk,s}	[Nm]	12.2	30.0	59.8	104.8	266.4
Partial safety factor ¹⁾	ÝМs	[-]		P.	1.33		
High corrosion resistant stainless stee							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	10.7	26.2	52.3	91.7	233.1
Partial safety factor ¹⁾	ÝМs	[-]			1.56		
¹⁾ In the absence of other national regulat							

¹⁾ In the absence of other national regulations.

Table C11: Characteristic resistance under shear loads – pry out and concrete edge failure for rod with inner thread

Size				M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24
Pry out failure		-	-				
Factor	k ₈	[-]			2		
Concrete edge failure							
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	16	24
Effective length of anchor under shear loading	۱ _f	[mm]	[mm] min (h _{ef} ; 12d _{nom})				

R-KEX-II

Performances

Characteristic resistance under shear loads in cracked and uncracked concrete – rod with inner thread

Size	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32					
Rebar													
Characteristic resistance	acteristic resistance V _{Rk.s} [kN]					$0.5 \cdot A_s^{2)} \cdot f_{uk}$							
Factor considering ductility	k 7	[-]	0.8										
Partial safety factor ¹⁾	γMs	γ _{Ms} [-] 1.5											

Table C12: Characteristic resistance under shear loads for rebar – steel failure without lever arm

¹⁾ In the absence of other national regulations. ²⁾ Stressed cross section of the steel element.

Table C13: Characteristic resistance under shear loads for rebar – steel failure with lever arm

Size				Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Rebar										
Characteristic resistance	M ⁰ Rk,s	[Nm]				1.2 · W	/ _{el} ²) ⋅ f _{uk}			
Partial safety factor ¹⁾	γMs	[-]	1.5							

¹⁾ In the absence of other national regulations.

²⁾Elastic section modulus calculated from the stressed cross section of steel element.

Table C14: Characteristic resistance under shear loads - pry out and concrete edge failure for rebar

Size				Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Pry out failure				l.		l.				
Factor	k ₈	[-]					2			
Concrete edge failure			1							
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	25	32
Effective length of anchor under shear loading	lf	[mm]						min (h _e	_f ; 8d _{nom})	

R-KEX-II

Performances

Characteristic resistance under shear loads in cracked and uncracked concrete - rebars

Table C15: Displacement under tension loads – threaded rod

Size			M8	M10	M12	M16	M20	M24	M30	
Characteristic displacement in uncr	acked concrete	C20/25 t	o C50/6	0 undei	r tensio	n loads				
Displacement 1)	[mm]	0.33	0.40	0.41	0.47	0.52	0.56	0.70		
Displacement ¹⁾	[mm]	0.75	0.75	0.75	0.75	0.75	0.75	0.75		
Characteristic displacement in crac	ked concrete C2	20/25 to C	50/60 u	inder te	nsion l	oads				
Displacement 1)	δ _{N0}	[mm]	0.20	0.20	0.24	0.28	0.39	0.44	0.46	
Displacement ¹⁾	δη∞	[mm]	3.0	3.0	2.5	2.6	2.5	2.4	3.0	
¹⁾ These values are suitable for each temperature range and categories specified in Annex B1										
Calculation of the displacement: $\delta_{N0} = \delta_{N0}$ -factor · N; $\delta_N = \delta_{N\infty}$ -factor · N; (N – applied tension load)										

Table C16: Displacement under shear loads – threaded rod

Size			M8	M10	M12	M16	M20	M24	M30
Characteristic displacement in crac	ked and uncra	cked conc	rete C2	0/25 to	C50/60	under s	shear lo	ads	
	δνο	[mm]	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Displacement ¹⁾	3.7	3.7	3.7	3.7					
¹⁾ These values are suitable for each temperature range and categories specified in Annex B1									

Calculation of the displacement: $\delta_{N0} = \delta_{N0}$ -factor · V; $\delta_N = \delta_{N\infty}$ -factor · V; (V – applied shear load)

Table C17: Displacement under tension loads - rod with inner thread

Size			M6/Ø10	M8/Ø12	M10/Ø16	M12/Ø16	M16/Ø24	
Characteristic displacement in uncra	icked co	ncrete C20	0.25 0.25 0.26 0.32 0.37					
Displacement ¹⁾	δνο	[mm]	0.25	0.25	0.26	0.32	0.37	
Displacement	δν∞	[mm]	0.75	0.75	0.75	0.75	0.75	
¹⁾ These values are suitable for each te	mperatur	e range an	d categories	specified ir	n Annex B1			

Calculation of the displacement: $\delta_{N0} = \delta_{N0}$ -factor · N; $\delta_N = \delta_{N\infty}$ -factor · N; (N – applied tension load)

Table C18: Displacement under shear loads - rod with inner thread

Size			M6/Ø10	M8/Ø12	M10/Ø16	M12/ Ø16	M16/Ø24			
Characteristic displacement in uncra	acked con	crete C2	0/25 to C50/	/60 under sl	near loads					
Displacement 1)	δ _{V0}	[mm]	2.5	2.5	2.5	2.5	2.5			
Displacement ¹⁾	δ _{V∞}	[mm]	3.7	3.7	3.7	3.7	3.7			
¹⁾ These values are suitable for each te	mperature	range ar	nd categories	s specified in	n Annex B1					
¹⁾ These values are suitable for each temperature range and categories specified in Annex B1 Calculation of the displacement: $\delta_{N0} = \delta_{N0}$ -factor · V; $\delta_N = \delta_{N\infty}$ -factor · V; (V – applied shear load)										

R-KEX-II

Performances

Displacement under service loads: tension and shear loads – threaded rod and rod with inner thread

Table C19: Displacement under tension loads - rebar

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Characteristic displacement in uncra	cked co	ncrete C	20/25 to	C50/60	under	tension	loads			
Displacement 1)	Displacement ¹⁾ δ_{N0}						0.43	0.45	0.48	0.53
Displacement 1) $\delta_{N\infty}$ [mr			0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Characteristic displacement in crack	ed conc	rete C20/	25 to C	50/60 ur	nder ten	ision loa	ads			
Displacement	δνο	[mm]	0.2	0.2	0.24	0.30	0.31	0.34	0.38	0.40
Displacement	δν∞	[mm]	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
¹⁾ These values are suitable for each te	mperatur	e range a	and cate	gories s	pecified	in Anne	x B1.			
Calculation of the displacement: $\delta_{N0} = \delta_{N0}$ -factor · N; $\delta_N = \delta_{N\infty}$ -factor · N; (N – applied tension load)										

Table C20: Displacement under shear loads - rebar

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32		
Characteristic displacement in cracked and uncracked concrete C20/25 to C50/60 under shear loads												
Displacement 1)	δνο	[mm]	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5		
Displacement ¹) $\delta_{V\infty}$ [mm] 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7												
¹⁾ These values are suitable for each temperature range and categories specified in Annex B1												

Calculation of the displacement: $\delta_{N0} = \delta_{N0}$ -factor · V; $\delta_N = \delta_{N0}$ -factor · V; (V – applied shear load)

R-KEX-II

Performances

Displacement under service loads: tension and shear loads - rebar

Table C21: Characteristic resistance under tension load for threaded rod for seismic performance category C1

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure									
Steel, property class 5.8									
Characteristic resistance	N _{Rk,s,seis}	[kN]	18	29	42	78	122	176	280
Partial safety factor ¹⁾	γMs, seis	[-]				1.50			
Steel, property class 8.8									
Characteristic resistance	N _{Rk,s,seis}	[kN]	29	46	67	125	196	282	448
Partial safety factor ¹⁾	γMs, seis	[-]				1.50			
Stainless steel, property class A4-70									
Characteristic resistance	N _{Rk,s, seis}	[kN]	25	40	59	109	171	247	392
Partial safety factor ¹⁾	γMs, seis	[-]				1.87			
Stainless steel, property class A4-80									
Characteristic resistance	NRk,s, seis	[kN]	29	46	67	125	196	282	448
Partial safety factor ¹⁾	γMs, seis	[-]				1.60			
High corrosion resistant stainless ste	el, property clas	s 70							
Characteristic resistance	N _{Rk,s, seis}	[kN]	25	40	59	109	171	247	392
Partial safety factor ¹⁾	γMs, seis	[-]				1.87			
Combined pull-out and concrete c	one failure, wo	rking life 50	years	ľ	ľ	ľ	r	r	
Temperature range I: 40°C/24°C	τ _{Rk,seis}	[N.mm ⁻²]	6.0	7.0	6.5	7.0	6.0	5.5	4.0
Temperature range II: 80°C/50°C	TRk,seis	[N.mm ⁻²]	5.0	6.5	5.5	6.0	5.5	5.0	3.5
Combined pull-out and concrete co	one failure, ork	ing life 100 y	years						
Temperature range I: 40°C/24°C	τ _{Rk,seis}	[N.mm ⁻²]	6.0	7.0	6.0	6.5	6.0	5.5	4.0
Temperature range II: 80°C/50°C	TRk,seis	[N.mm ⁻²]	5.0	6.0	5.5	6.0	5.5	5.0	3.5

Note: Design method according to TR 045.

¹⁾ In the absence of other national regulations

Table C22: Characteristic resistance under tension load for rebar for seismic performance category C1

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Steel failure										
Characteristic resistance	N _{Rk,s,seis}	[kN]				As ²⁾	• f _{uk}			
Partial safety factor ¹⁾	γMs, seis					1,	40			
Combined pull-out and concrete co	one failure, wor	king life 50) years							
Temperature range I: 40°C/24°C	TRk,seis	[N.mm ⁻²]	4.0	4.5	5.0	5.0	5.0	5.0	5.0	3.0
Temperature range II: 80°C/50°C	$\tau_{Rk,seis}$	[N.mm ⁻²]	3.5	4.0	4.5	4.5	4.5	4.5	4.5	2.5
Combined pull-out and concrete co	one failure, wor	king life 10)0 year	s						
Temperature range I: 40°C/24°C	TRk,seis	[N.mm ⁻²]	3.5	4.5	5.0	5.0	5.0	3.5	5.0	3.0
Temperature range II: 80°C/50°C	TRk,seis	[N.mm ⁻²]	3.5	4.0	4.5	4.5	4.5	4.0	4.5	2.5

Note: Design method according to TR 045.

¹⁾ In the absence of other national regulations

²⁾ Stressed cross section of the steel element

R-KEX-II

Performances

Characteristic resistance under tension loads for threaded rod and rebar for seismic performance category 1

Table C23: Characteristic resistance under shear loads for threaded rod for seismic performance category C1 – steel failure without lever arm

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure with threaded rod grade 5.8									
Characteristic resistance	V _{Rk.s.C1}	[kN]	7.7	11.9	17.5	32.9	51.1	74.2	117.6
Partial safety factor ¹⁾	γMs. C1	[-]				1.25			
Steel failure with threaded rod grade 8.8									
Characteristic resistance	V _{Rk.s.C1}	[kN]	10.2	16.1	23.5	44.1	68.6	98.7	156.8
Partial safety factor ¹⁾	γMs. C1	[-]				1.25			
Steel failure with threaded rod grade 10.9									
Characteristic resistance	V _{Rk.s.C1}	[kN]	12.6	20.3	29.4	54.6	85.4	123.2	196
Partial safety factor ¹⁾	γMs. C1	[-]				1.5			
Steel failure with threaded rod grade 12.9									
Characteristic resistance	V _{Rk.s.C1}	[kN]	15.4	24.5	35.7	65.8	102.9	148.4	235.2
Partial safety factor ¹⁾	γMs. C1	[-]				1.5			
Steel failure with stainless steel threaded rod	44-70								
Characteristic resistance	V _{Rk.s.C1}	[kN]	9.1	14.4	20.7	38.5	59.9	86.5	137.4
Partial safety factor ¹⁾	γMs. C1	[-]				1.56			
Steel failure with stainless steel threaded rod /	44-80								
Characteristic resistance	V _{Rk.s.C1}	[kN]	10.2	16.1	23.5	44.1	68.6	98.7	157.2
Partial safety factor ¹⁾	γMs. C1	[-]				1.33			
Steel failure with high corrosion stainless stee									
Characteristic resistance	V _{Rk.s.C1}	[kN]	9.1	14.4	20.7	38.5	59.9	86.5	137.4
Partial safety factor ¹⁾	γMs. C1	[-]				1.56			

¹⁾ In the absence of other national regulation

¹⁾ In the absence of other national regulations.

Table C24: Characteristic resistance under shear loads for rebar for seismic performance category C1 – steel failure without lever arm

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32	
Steel failure with rebar											
Characteristic resistance	V _{Rk.s.seis}	[kN]	$0.35 \cdot A_s^{(2)} \cdot f_{uk}$								
Partial safety factor 1)	γMs. seis	[-]	1.5								

¹⁾ In the absence of other national regulations.

 $^{\mbox{\tiny 2)}}$ Stressed cross section of the steel element

R-KEX-II Annex C 15 Performances Annex C 15 Characteristic resistance under shear loads for seismic performance category 1

Table C25: Displacement under tension loads – threaded rod for seismic performance category C1

Size				M10	M12	M16	M20	M24	M30
Displacement	δN.seis	[mm]	2.8	3.0	3.0	3.2	3.3	4.0	5.5

Table C26: Displacement under shear loads – threaded rod for seismic performance category C1

Size				M10	M12	M16	M20	M24	M30
Displacement	δ V.seis	[mm]	3.4	4.0	5.0	5.3	5.9	6.0	6.5

Table C27: Displacement under tension loads – rebar for seismic performance category C1

Size				Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Displacement	δ N.seis	[mm]	3.0	3.3	3.5	3.9	4.1	4.5	5.6	6.0

Table C28: Displacement under shear loads - rebar for seismic performance category C1

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Displacement	δ V.seis	[mm]	3.6	3.7	4.0	4.6	4.8	5.5	6.6	7.0

R-KEX-II

Performances

Displacement under service loads: tension and shear loads for seismic performance category C1 – threaded rod and rebar

Table C29: Characteristic resistance to tension load (threaded rod) – seismic performance category C2

Size			M12	M16	M20	M24	
Steel failure							
Characteristic resistance	N _{Rk,s,C2}	[N/mm ²]	N _{Rk,s}	N _{Rk,s}	N _{Rk,s}	N _{Rk,s}	
Combined pull-out and concrete cone failure (uncracked and cracked concrete)							
Characteristic bond resistance temperature range -40°C / +40°C	τ _{Rk,C2}	[N/mm ²]	5.65	3.93	5.18	3.65	
Characteristic bond resistance temperature range -40°C / +80°C	τ _{Rk,C2}	[N/mm ²]	5.03	3.50	4.61	3.25	

Table C30: Characteristic resistance to shear load (threaded rod) – seismic performance category C2

Size			M12	M16	M20	M24
Steel failure with threaded rod grade 5.8						
Characteristic resistance	V _{Rk,s,C2}	[N/mm ²]	11.6	13.7	26.3	47.0
Steel failure with threaded rod grade 8.8						
Characteristic resistance	V _{Rk,s,C2}	[N/mm ²]	18.5	22.0	42.1	75.1
Steel failure with threaded rod grade 10.9						
Characteristic resistance	V _{Rk,s,C2}	[N/mm ²]	23.2	27.4	52.6	93.9
Steel failure with threaded rod grade 12.9						
Characteristic resistance	V _{Rk,s,C2}	[N/mm ²]	27.8	32.9	63.2	112.6
Stainless steel, property class A4-70						
Characteristic resistance	V _{Rk,s,C2}	[N/mm ²]	15.8	19.2	36.9	66.0
Stainless steel, property class A4-80						
Characteristic resistance	V _{Rk,s,C2}	[N/mm ²]	18.5	22.0	42.1	75.1
High corrosion resistant stainless steel, property cla	ss 70					
Characteristic resistance	V _{Rk,s,C2}	[N/mm ²]	15,8	19.2	36.9	66.0

Table C31: Displacements under tensile and shear load (threaded rod) – seismic performance category C2

Size			M16	M20	M24				
Displacements for tensile and shear load for seismic performance category C2									
$\delta_{\text{N,eq,C2 (DLS)}}$	[mm]	0.85	1.14	0.77	0.94				
$\delta_{\text{N,eq,C2}} \text{(ULS)}$	[mm]	1.70	2.01	2.07	1.91				
$\delta_{V,eq,C2}$ (DLS)	[mm]	3.01	2.28	3.60	3.15				
$\delta_{V,eq,C2}~(\text{ULS})$	[mm]	6.44	8.81	7.57	8.21				
		$\begin{array}{c c} & & & & \\ \hline \\ \hline$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	performance category C2 δ _{N,eq,C2 (DLS)} [mm] 0.85 1.14 δ _{N,eq,C2 (ULS)} [mm] 1.70 2.01 δ _{V,eq,C2 (DLS)} [mm] 3.01 2.28	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				

All temperature ranges

R-KEX-II

Performances

Displacement under service loads: tension and shear loads for seismic performance category C1 – threaded rod and rebar

British Board of Agrément, 1st Floor Building 3 Hatters Lane Croxley Park Watford WD18 8YG