

# Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

| UK Technical Assessment                                                                                                                          | UKTA-0836-22/6130 of 15/09/2022                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Technical Assessment Body issuing the UK Technical Assessment:                                                                                   | British Board of Agrément                                                    |
| Trade name of the construction product:                                                                                                          | R-KER-II, R-KER-II-S and R-KER-II-W                                          |
| Product family to which the construction product belongs:                                                                                        | Area Code 33,<br>Bonded fasteners for use in concrete                        |
| Manufacturer:                                                                                                                                    | RAWLPLUG S.A.<br>ul. Kwidzyńska 6<br>51-416 Wrocław<br>Poland                |
| Manufacturing plant(s):                                                                                                                          | Manufacturing Plant No. 3                                                    |
| This UK Technical Assessment contains:                                                                                                           | 46 pages including 3 annexes, which form an integral part of this assessment |
| This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of: | UKAD 330499-01-0601 "Bonded fasteners for use in concrete"                   |

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

#### 1. Technical description of the product

The R-KER-II, R-KER-II-S and R-KER-II-W are bonded anchors (injection type) consisting of a injection mortar cartridge using an applicator gun equipped with a special mixing nozzle and steel element.

The steel element consists of:

- threaded anchor rod sizes M8 to M30 made of:
  - galvanized carbon steel,
  - carbon steel with zinc flake coating,
  - stainless steel.
  - high corrosion resistant stainless steel,
  - ultra-high strength steel with zinc flake coating, with hexagon nut and washer
- anchor rod with inner thread sizes M6/Ø10 to M16/Ø24 made of:
  - galvanized carbon steel.
  - stainless steel,
  - high corrosion resistant stainless steel,
- rebar sizes Ø8 to Ø32.

The steel element is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The rod or rebar is anchored by the bond between steel element, mortar and concrete.

The threaded rods are available for all diameters with three type of tip end: a one side 45° chamfer, a two sides 45° chamfer or a flat. The threaded rods are either delivered with the mortar cartridges, or commercial standard threaded rods purchased separately. The mortar cartridges are available in different sizes and types.

Description of the products is given in Annex A.

# 2. Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The performances given in this UK Technical Assessment are based on an assumed working life of the anchor of 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

# 3. Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                                  | Performance          |
|-----------------------------------------------------------------------------------------------------------|----------------------|
| Characteristic resistance to tension load and shear load (static and quasi static loading), displacements | See Annex C1 to C15  |
| Characteristic resistance for seismic performance category C1, displacements                              | See Annex C16 to C18 |

#### 3.2 Safety in case of fire (BWR 2)

Not relevant.

# 3.3 Health, hygiene and the environment (BWR 3)

Not relevant.

3.4 Safety and accessibility in use (BWR 4)

Not relevant.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

Not relevant.

- 4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied
- 4.1. System of assessment and verification of constancy of performance

According to UKAD No. 330499-01-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011 as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

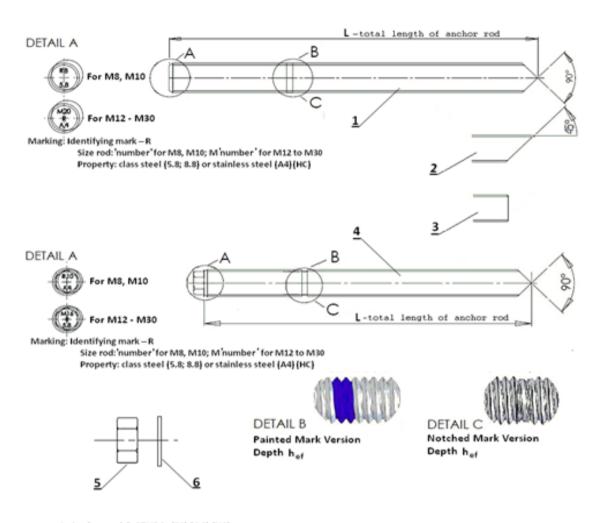
- 5.1 UKCA marking for the product/ system must contain the following information:
  - Identification number of the Approved Body
  - Name/address of the manufacturer of the product/ system
  - Marking with intention of clarification of intended use
  - Date of marking
  - Number of certificate of constancy of performance
  - UKTA number.

On behalf of the British Board of Agrément

Hardy Giesler Chief Executive

Date of Issue: 15 September 2022




# British Board of Agrément,

1st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG

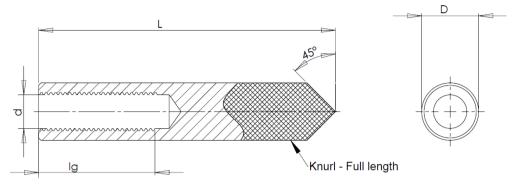
#### **ANNEXES**

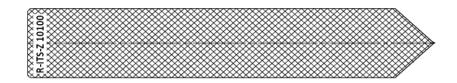
These annexes apply to the product described in the main body of the UK Technical Assessment.

#### Threaded anchor rods



- 1. Anchor rod R-STUDS-(88),(A4),(HC)-FL
- 2. 45° shape with anchor rod
- 3. The flat end of anchor rod
- 4. Anchor rod R-STUDS-{88},(A4),(HC) with the hexagonal tip
- 5. Hexagonal nut
- 6. Washer


# R-KER-II, R-KER-II-S and R-KER-II-W


# Product description

Threaded anchor rods

Annex A 1

# Anchor rods with inner thread





Marking: R - Identifying mark ITS - product index

Z - carbon steel or A4 - stainless steel

XX - thread size YYY - length of sleeve

# Rebar

embedment depth marking her

# R-KER-II, R-KER-II-S and R-KER-II-W

**Product description**Anchor rods with inner thread and rebar

Annex A 2

Table A1: Threaded rods

|                | Designation                                                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                                    |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Part           | Steel, zinc plated                                                                                                                                                                                                             | Stainless steel                                                                                                                                                                    | High corrosion resistance stainless steel (HCR)                                                                                                                               | Ultra-high Strength<br>Steel, coated                                                                                               |  |  |  |
| Threaded rod   | Steel, property class 5.8 to 12.9 acc. to EN ISO 898-1 electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684 or non-electrolytically applied zinc flake coating ≥ 8 µm acc. EN ISO 10683 | Steel 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006 +A1:2015 | Steel 1.4529, 1.4565,<br>1.4547 acc. to EN<br>10088; property class<br>70 acc. to EN ISO 3506<br>Corrosion resistance<br>class CRC V<br>acc. to EN 1993-1-<br>4:2006 +A1:2015 | Steel, property class 14.8U to 16.8U acc. to USCAR- UHSFG-1416U non-electrolytically zinc flake coating ≥ 8 µm acc. EN ISO 10683   |  |  |  |
| Hexagon<br>nut | Steel, property class 5 to 12, acc. to EN ISO 898-2; electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684 or non-electrolytically applied zinc flake coating ≥ 8 µm acc. EN ISO 10683   | Steel 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006 +A1:2015 | Steel 1.4529, 1.4565,<br>1.4547 acc. to EN<br>10088; property class<br>70 acc. to EN ISO 3506<br>Corrosion resistance<br>class CRC V<br>acc. to EN 1993-1-<br>4:2006 +A1:2015 | Steel, property class 12 to 16 acc. to USCAR- UHSFG-1416U non-electrolytically applied zinc flake coating ≥ 8 µm acc. EN ISO 10683 |  |  |  |
| Washer         | Steel acc. to EN ISO 7089; electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684 or non-electrolytically applied zinc flake coating ≥ 8 µm acc. EN ISO 10683                             | Steel 1.4401, 1.4404,<br>1.4571 acc. to EN<br>10088<br>Corrosion resistance<br>class CRC III<br>acc. to EN 1993-1-<br>4:2006 +A1:2015                                              | Steel 1.4529, 1.4565,<br>1.4547 acc. to EN<br>10088<br>Corrosion resistance<br>class CRC V<br>acc. to EN 1993-1-<br>4:2006 +A1:2015                                           | Steel acc. to EN ISO 7089; non-electrolytically applied zinc flake coating ≥ 8 μm acc. EN ISO 10683                                |  |  |  |

Commercial threaded rods (in the case of rods made of galvanized steel – standard rods with property class  $\leq 8.8$  only), with:

- material and mechanical properties according to Table A1,
- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN10204:2004;
   the documents shall be stored,
- marking of the threaded rod with the embedment depth.

Note: Commercial threaded rods made of galvanized steel with property class above 8.8 are not permitted in some Member States.

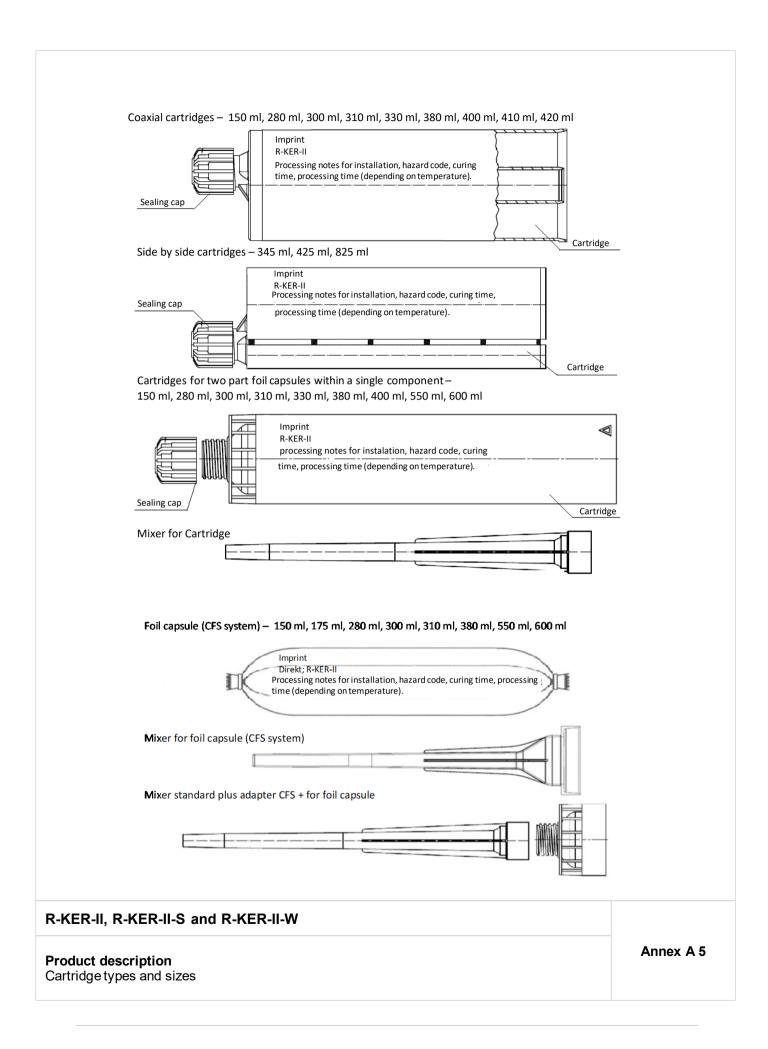
| R-KER-II, R-KER-II-S and R-KER-II-W |           |
|-------------------------------------|-----------|
| Product description Materials       | Annex A 3 |

Table A2: Rods with inner threaded

| Part                          | Material                                                                                                                                           |                              |                                                 |  |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------|--|--|--|
|                               | Steel, zinc plated                                                                                                                                 | Stainless steel              | High corrosion resistance stainless steel (HCR) |  |  |  |
| Rod with<br>inner<br>threaded | Steel, property class 5.8 to 8.89 acc. to EN ISO 898-1 electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684 | Steel 1.4401, 1.4404, 1.4571 | Steel 1.4529, 1.4565, 1.4547                    |  |  |  |

\_

# - Table A3: Reinforcing bars according to EN 1992-1-1, Annex C


| Product form                                             | Bars and de-coi                          | Bars and de-coiled rods  |                    |  |
|----------------------------------------------------------|------------------------------------------|--------------------------|--------------------|--|
| Class                                                    |                                          | В                        | С                  |  |
| Characteristic yield strength fyk or fo,2k [N/mm²        | 2]                                       | 400 to                   | 600                |  |
| Minimum value of $k = (f_t / f_y)_k$                     |                                          | ≥ 1,08                   | ≥ 1,15<br>< 1,35   |  |
| Characteristic strain at maximum force, εuk [%           | ]                                        | ≥ 5,0                    |                    |  |
| Bendability                                              |                                          | Bend / Rel               | Bend / Rebend test |  |
| Maximum deviation from nominal mass (individual bar) [%] | Nominal bar size [mm] ≤ 8 > 8            | ± 6, ± 4,                |                    |  |
| Bond: minimum relative rib area, f <sub>R,min</sub>      | Nominal bar size [mm]<br>8 to 12<br>> 12 | 0,0 <sup>2</sup><br>0,05 |                    |  |

– Rib height h: The maximum rib height  $h_{rib}$  shall be:  $h_{rib}$  ≤ 0,07 · Ø

**Table A4: Injection mortars** 

| Product                               | Composition                                                                                  |
|---------------------------------------|----------------------------------------------------------------------------------------------|
| I R-NER-II. R-NER-II-S and R-NER-II-W | Additive: quartz Bonding agent: vinyl ester mortar styrene free Hardener: dibenzoyl peroxide |

| R-KER-II, R-KER-II-S and R-KER-II-W |           |
|-------------------------------------|-----------|
| Product description Materials       | Annex A 4 |



#### Specification of intended use

#### Anchorages subject to:

Static and quasi-static loads: threaded rod size M8 to M30, rod with inner thread sizes M6/Ø10 to M16/Ø24 and rebar Ø8 to Ø32.

Seismic performance category C1: threaded rod size M8 to M30 and rebar Ø8 to Ø32

#### Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Cracked and uncracked concrete.

#### Temperature ranges:

#### Installation temperature (temperature of substrate):

- -5°C to +40°C in case of R-KER-II (standard version).
- +5°C to +40°C in case of R-KER-II-S (version for summer season).
- -20°C to +40°C in case of R-KER-II-W (version for winter season).

#### In-service temperature:

The anchors may be used in the following temperature range:

- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).
- -40°C to +120°C (max. short term temperature +120°C and max. long term temperature +80°C).

#### Use conditions (environmental conditions):

- Structures subject to dry internal conditions: all materials.
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class (CRC): elements made of stainless steel or high corrosion resistance stainless steel (HCR).

#### Installation:

- Dry or wet concrete (use category I1).
- Flooded holes (use category I2).
- Installation direction D3 (downward and horizontal and upwards installation).
- The anchors are suitable for hammer drilled holes or by special method with cleaning during drill a hole using hollow drill bit with vacuum cleaner.

#### **Design methods:**

- Anchorages under static or quasi-static loads are designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055.
- Anchors are designed under the responsibility of the engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
  position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
  reinforcement or to supports, etc.).
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4:2018.

| R-KER-II, R-KER-II-S and R-KER-II-W |           |
|-------------------------------------|-----------|
| Intended use<br>Specification       | Annex B 1 |

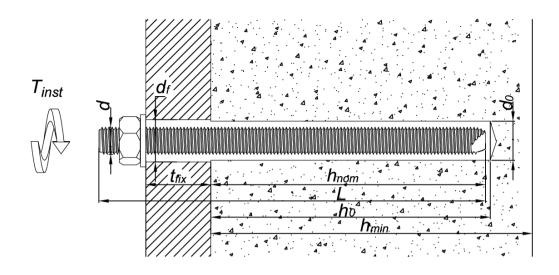



Table B1: Installation parameters – threaded anchor rod

| Size                                   |                                | M8                     | M10     | M12        | M16 | M20 | M24                               | M30 |
|----------------------------------------|--------------------------------|------------------------|---------|------------|-----|-----|-----------------------------------|-----|
| Diameter of anchor rod                 | d [mm]                         | 8                      | 10      | 12         | 16  | 20  | 24                                | 30  |
| Nominal drilling diameter              | d <sub>0</sub> [mm]            | 10                     | 12      | 14         | 18  | 24  | 28                                | 35  |
| Maximum diameter hole in the fixture   | d <sub>f</sub> [mm]            | 9                      | 12      | 14         | 18  | 22  | 26                                | 33  |
| Effective                              | h <sub>ef,min</sub> [mm]       | 60                     | 60      | 60         | 60  | 80  | 96                                | 120 |
| embedment depth                        | h <sub>ef,max</sub> [mm]       | 160                    | 200     | 240        | 320 | 400 | 480                               | 600 |
| Depth of the drilling hole             | h <sub>0</sub> [mm]            | h <sub>ef</sub> + 5 mm |         |            |     |     |                                   |     |
| Minimum thickness of the concrete slab | h <sub>min</sub> [mm]          | h <sub>ef</sub>        | + 30 mm | n; ≥ 100 ı | mm  |     | h <sub>ef</sub> + 2d <sub>0</sub> |     |
| Maximum installation torque            | T <sub>inst,max</sub><br>[N·m] | 10                     | 20      | 40         | 80  | 120 | 160                               | 200 |
| Minimum spacing                        | s <sub>min</sub> [mm]          | 40                     | 40      | 40         | 40  | 40  | 50                                | 60  |
| Minimum edge distance                  | c <sub>min</sub> [mm]          | 40                     | 40      | 40         | 40  | 40  | 50                                | 60  |

| R-KER-II, R-KER-II-S and R-KER-II-W                        |           |
|------------------------------------------------------------|-----------|
| Intended use Installation parameters – threaded anchor rod | Annex B 2 |

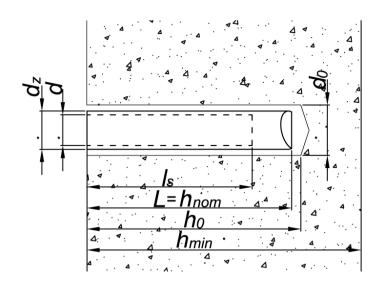



Table B2: Installation parameters – anchor rod with inner thread

| Size                                         |                                            | M6/<br>Ø10<br>/75                                                   | M8/<br>Ø12/<br>75 | M8/<br>Ø12/<br>90 | M10/<br>Ø16/<br>75     | M10/<br>Ø16/<br>100 | M12/<br>Ø16/<br>100 | M16/<br>Ø24/<br>125 |
|----------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|-------------------|-------------------|------------------------|---------------------|---------------------|---------------------|
| Nominal drilling diameter                    | d <sub>0</sub> [mm]                        | 12                                                                  | 14                | 14                | 20                     | 20                  | 20                  | 28                  |
| Maximum diameter hole in the fixture         | d <sub>f</sub> [mm]                        | 7                                                                   | 9                 | 9                 | 12                     | 12                  | 14                  | 18                  |
| Effective embedment depth                    | h <sub>ef</sub> = h <sub>nom</sub><br>[mm] | 75                                                                  | 75                | 90                | 75                     | 100                 | 100                 | 125                 |
| Thread length, min                           | I <sub>s</sub> [mm]                        | 24                                                                  | 25                | 25                | 30                     | 30                  | 35                  | 50                  |
| Depth of the drilling hole                   | h <sub>0</sub> [mm]                        |                                                                     |                   | h                 | n <sub>ef</sub> + 5 mr | n                   |                     |                     |
| Minimum<br>thickness of the<br>concrete slab | h <sub>min</sub> [mm]                      | h <sub>ef</sub> + 30 mm; ≥ 100 mm h <sub>ef</sub> + 2d <sub>0</sub> |                   |                   |                        |                     |                     |                     |
| Maximum installation torque                  | T <sub>inst,max</sub><br>[N·m]             | 3                                                                   | 5                 | 5                 | 10                     | 10                  | 20                  | 40                  |
| Minimum spacing                              | s <sub>min</sub> [mm]                      | 40                                                                  | 40                | 50                | 40                     | 50                  | 50                  | 70                  |
| Minimum edge distance                        | c <sub>min</sub> [mm]                      | 40                                                                  | 40                | 50                | 40                     | 50                  | 50                  | 70                  |

| R-KER-II, R-KER-II-S and R-KER-II-W                                 |           |
|---------------------------------------------------------------------|-----------|
| Intended use Installation parameters – anchor rod with inner thread | Annex B 3 |

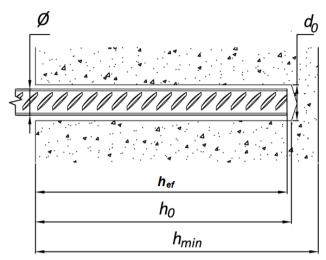



Table B3: Installation parameters – rebar

| Size                                         |                          | Ø8                | Ø10     | Ø12      | Ø14               | Ø16  | Ø20               | Ø25                               | Ø32 |  |  |
|----------------------------------------------|--------------------------|-------------------|---------|----------|-------------------|------|-------------------|-----------------------------------|-----|--|--|
| Nominal drilling diameter                    | d <sub>0</sub> [mm]      | 12                | 14      | 18       | 18                | 22   | 26                | 32                                | 40  |  |  |
| Effective                                    | h <sub>ef,min</sub> [mm] | 60                | 60      | 60       | 60                | 64   | 80                | 100                               | 128 |  |  |
| embedment depth                              | h <sub>ef,max</sub> [mm] | 160               | 200     | 240      | 240               | 320  | 400               | 500                               | 640 |  |  |
| Depth of the drilling hole                   | h <sub>0</sub> [mm]      |                   |         |          | h <sub>ef</sub> + | 5 mm |                   |                                   |     |  |  |
| Minimum<br>thickness of the<br>concrete slab | h <sub>min</sub> [mm]    | h <sub>ef</sub> + | + 30 mm | n; ≥ 100 | mm                |      | h <sub>ef</sub> + | h <sub>ef</sub> + 2d <sub>0</sub> |     |  |  |
| Minimum spacing                              | s <sub>min</sub> [mm]    | 40                | 40      | 40       | 40                | 40   | 40                | 50                                | 70  |  |  |
| Minimum edge distance                        | c <sub>min</sub> [mm]    | 40                | 40      | 40       | 40                | 40   | 40                | 50                                | 70  |  |  |

| R-KER-II, R-KER-II-S and R-KER-II-W             |           |
|-------------------------------------------------|-----------|
| Intended use<br>Installation parameters – rebar | Annex B 4 |

Table B4: Maximum processing time and minimum curing time

| R-KER-II (standard version) |                               |                                      |                              |  |  |  |  |  |  |  |
|-----------------------------|-------------------------------|--------------------------------------|------------------------------|--|--|--|--|--|--|--|
| Temperature of mortar [°C]  | Temperature of substrate [°C] | Maximum processing (open) time [min] | Minimum curing time 1) [min] |  |  |  |  |  |  |  |
| +5                          | -5                            | 40                                   | 1440                         |  |  |  |  |  |  |  |
| +5                          | 0                             | 30                                   | 180                          |  |  |  |  |  |  |  |
| +5                          | +5                            | 15                                   | 90                           |  |  |  |  |  |  |  |
| +10                         | +10                           | 8                                    | 60                           |  |  |  |  |  |  |  |
| +15                         | +15                           | 5                                    | 60                           |  |  |  |  |  |  |  |
| +20                         | +20                           | 2,5                                  | 45                           |  |  |  |  |  |  |  |
| +25                         | +25                           | 2                                    | 45                           |  |  |  |  |  |  |  |
| +25                         | +30                           | 2                                    | 45                           |  |  |  |  |  |  |  |
| +25                         | +35                           | 1,5                                  | 30                           |  |  |  |  |  |  |  |
| +25                         | +40                           | 1,5                                  | 30                           |  |  |  |  |  |  |  |

Table B5: Maximum processing time and minimum curing time

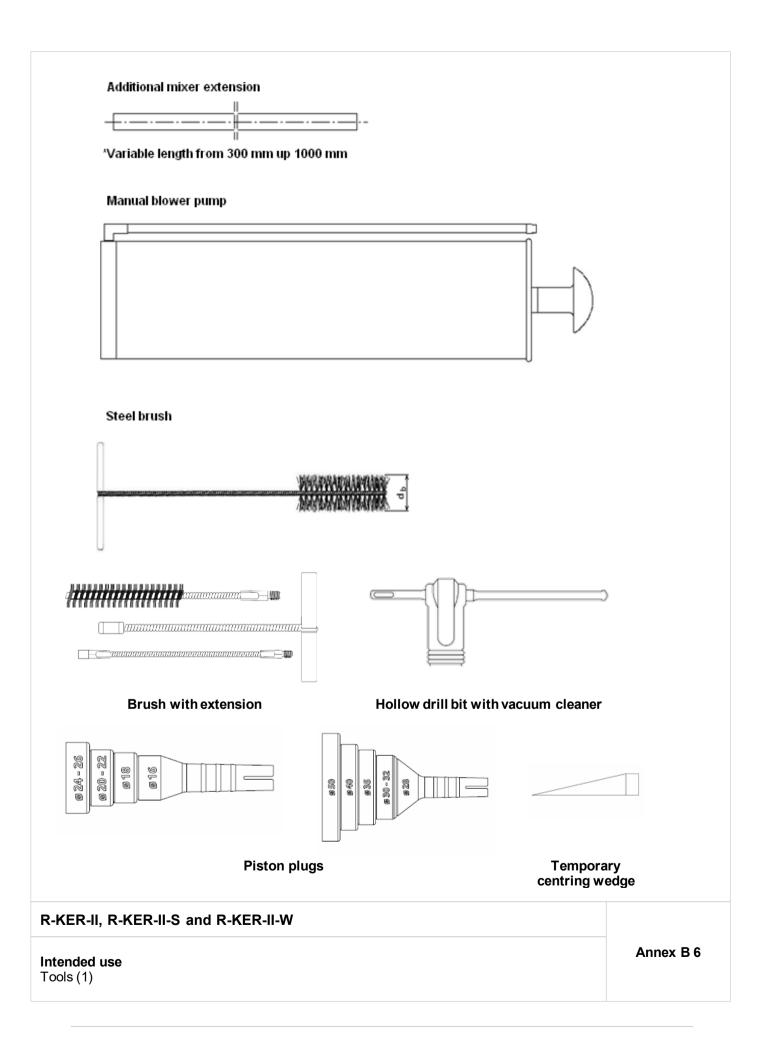

| R-KER-II-S (version for summer season) |                               |                                |                                          |  |  |  |  |  |  |  |  |
|----------------------------------------|-------------------------------|--------------------------------|------------------------------------------|--|--|--|--|--|--|--|--|
| Temperature of mortar [°C]             | Temperature of substrate [°C] | Maximum processing time [min.] | Minimum curing time <sup>1)</sup> [min.] |  |  |  |  |  |  |  |  |
| +5                                     | +5                            | 40                             | 720                                      |  |  |  |  |  |  |  |  |
| +10                                    | +10                           | 20                             | 480                                      |  |  |  |  |  |  |  |  |
| +15                                    | +15                           | 15                             | 360                                      |  |  |  |  |  |  |  |  |
| +20                                    | +20                           | 10                             | 240                                      |  |  |  |  |  |  |  |  |
| +25                                    | +25                           | 9,5                            | 180                                      |  |  |  |  |  |  |  |  |
| +25                                    | +30                           | 7                              | 120                                      |  |  |  |  |  |  |  |  |
| +25                                    | +35                           | 6,5                            | 120                                      |  |  |  |  |  |  |  |  |
| +25                                    | +40                           | 6,5                            | 90                                       |  |  |  |  |  |  |  |  |

Table B6: Maximum processing time and minimum curing time

| -                          | •                             | •                              |                               |
|----------------------------|-------------------------------|--------------------------------|-------------------------------|
|                            | R-KER-II-W (version           | on for winter season)          |                               |
| Temperature of mortar [°C] | Temperature of substrate [°C] | Maximum processing time [min.] | Minimum curing time 1) [min.] |
| +5                         | -20                           | 100                            | 1440                          |
| +5                         | -15                           | 60                             | 960                           |
| +5                         | -10                           | 40                             | 480                           |
| +5                         | -5                            | 20                             | 240                           |
| +5                         | 0                             | 14                             | 120                           |
| +5                         | +5                            | 9                              | 60                            |
| +10                        | +10                           | 5,5                            | 45                            |
| +15                        | +15                           | 3                              | 30                            |
| +20                        | +20                           | 2                              | 15                            |
| +25                        | +25                           | 1,5                            | 10                            |
| +25                        | +30                           | 1,5                            | 10                            |
| +25                        | +35                           | 1                              | 5                             |
| +25                        | +40                           | 1                              | 5                             |

<sup>1)</sup> The minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer). Minimum mortar temperature for installation +5°C; maximum mortar temperature for installation +25°C. For wet condition and flooded holes the curing time must be doubled.





| Dispensers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cartridge or foil capsule size   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 380, 400, 410 and 420 ml         |
| Manual gun for coaxial cartridges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345 ml                           |
| Manual gun for side by side cartridges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150, 175, 280, 300<br>and 310 ml |
| Manual gun for foil capsule in cartridge and coaxial cartridges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| The state of the s | 300 to 600 ml                    |
| Manual gun for foil capsules CFS+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |
| Cordless dispenser gun for coaxial cartridges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 380, 400, 410 and 420 ml         |
| Cordiess dispenser guir for coaxial cartridges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300 to 600 ml                    |
| Cordless dispenser gun for foil capsules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |
| Pneumatic gun for coaxial cartridges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 380, 400, 410 and 420 ml         |

| R-KER-II, R-KER-II-S and R-KER-II-W |           |  |
|-------------------------------------|-----------|--|
| Intended use<br>Tools (2)           | Annex B 7 |  |

# Table B7: Brush diameter for threaded rod

| Т  | hreaded rod diam | eter | M8 | M10 | M12 | M16 | M20 | M24 | M30 |
|----|------------------|------|----|-----|-----|-----|-----|-----|-----|
| dь | Brush diameter   | [mm] | 12 | 14  | 16  | 20  | 26  | 30  | 37  |

# Table B8: Standard brush diameter for rod with inner thread

| -              | Γhreaded rod diam | eter | M6/Ø10 | M8/Ø12 | M10/Ø16 | M12/ Ø16 | M16/Ø24 |
|----------------|-------------------|------|--------|--------|---------|----------|---------|
| d <sub>b</sub> | Brush diameter    | [mm] | 16     | 16     | 22      | 22       | 30      |

# Table B9: Brush diameter for rebar

| Rebar diameter |    |                |      | Ø8 | Ø10 | Ø12 | Ø14 | Ø16 | Ø20 | Ø25 | Ø32 |
|----------------|----|----------------|------|----|-----|-----|-----|-----|-----|-----|-----|
|                | dь | Brush diameter | [mm] | 14 | 16  | 20  | 20  | 24  | 28  | 37  | 42  |

# Table B10: Piston plug size

| Hole diameter [mm]      | 16  | 18  | 20     | 22    | 24 | 25      | 26 | 28  | 30  | 32    | 35  | 40  | 50  |
|-------------------------|-----|-----|--------|-------|----|---------|----|-----|-----|-------|-----|-----|-----|
| Piston plug description | Ø16 | Ø18 | Ø20 to | o Ø22 | Ø2 | 24 to Ø | 26 | Ø28 | Ø30 | to 32 | Ø35 | Ø40 | Ø50 |

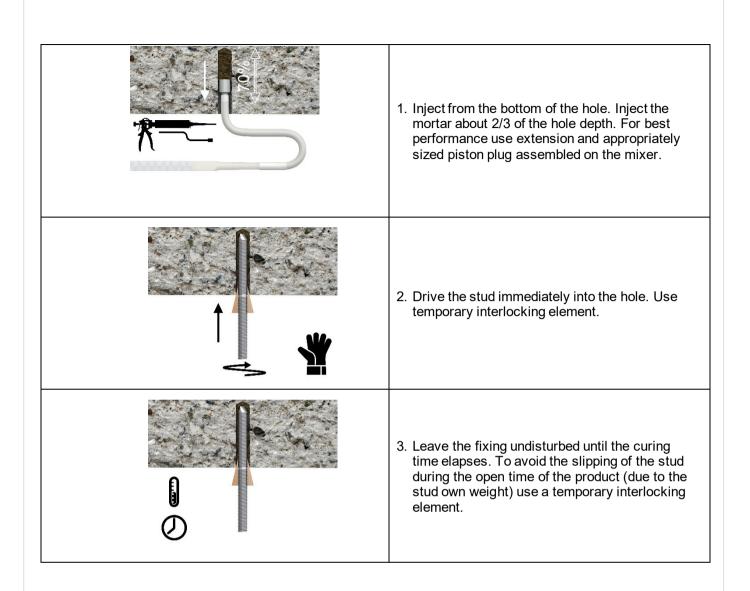
R-KER-II, R-KER-II-S and R-KER-II-W

Intended use Tools (3)

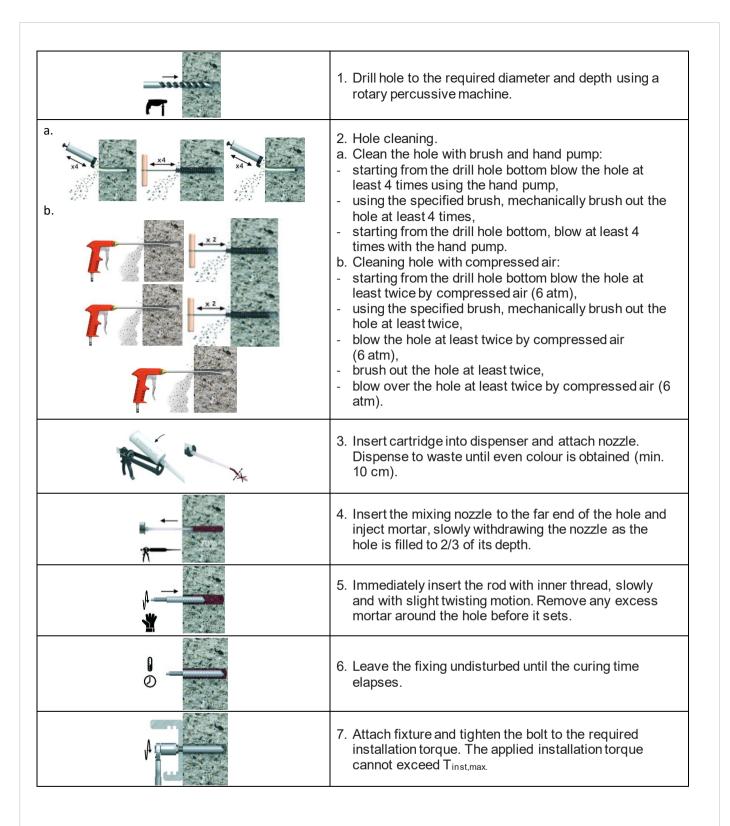
Annex B 8



| R-KER-II, R-KER-II-S and R-KER-II-W                                      |           |
|--------------------------------------------------------------------------|-----------|
| Intended use Installation instruction – threaded rod – standard cleaning | Annex B 9 |


|            | <del>,</del>                                                                                                                                     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Drill hole to the required diameter and depth using a hollow drill bit with vacuum cleaner.                                                      |
| ***        | Insert cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained.                                              |
| 70%        | Insert the mixing nozzle to the far end of the hole and inject mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth.  |
|            | Immediately insert the stud, slowly and with slight twisting motion. Remove any excess mortar around the hole before it sets.                    |
|            | 5. Leave the fixing undisturbed until the curing time elapses.                                                                                   |
| <b>V</b> = | 6. Attach fixture and tighten the nut to the required installation torque. The applied installation torque cannot exceed T <sub>inst,max</sub> . |

# R-KER-II, R-KER-II-S and R-KER-II-W


# Intended use

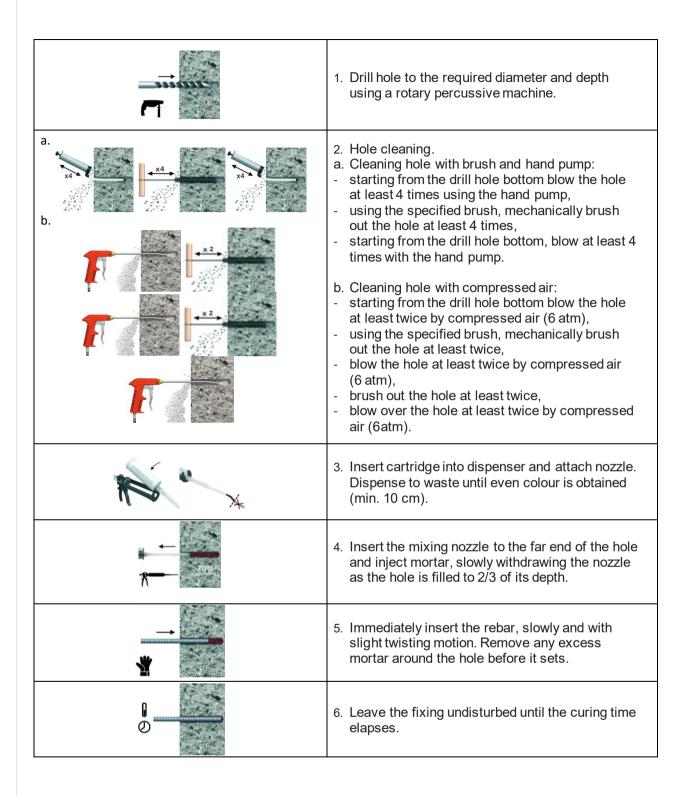
Installation instruction – threaded rod – cleaning with hollow drill bit (special cleaning method)

Annex B 10



| R-KER-II, R-KER-II-S and R-KER-II-W                                          |            |
|------------------------------------------------------------------------------|------------|
| Intended use Installation instruction – threaded rod – overhead installation | Annex B 11 |

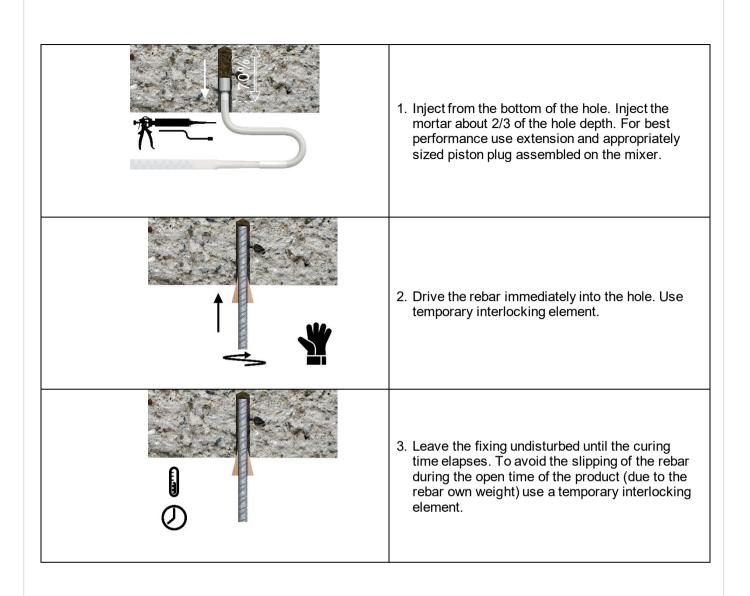



| R-KER-II, R-KER-II-S and R-KER-II-W                                                      |            |
|------------------------------------------------------------------------------------------|------------|
| Intended use Installation instruction – anchor rod with inner thread – standard cleaning | Annex B 12 |

|      | Drill hole to the required diameter and depth                                                                                                      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|      | using a hollow drill bit with vacuum cleaner.                                                                                                      |
|      | Insert cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained (min. 10 cm).                                   |
| 7076 | 3. Insert the mixing nozzle to the far end of the hole and inject mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth. |
|      | 4. Immediately insert the rod with inner thread, slowly and with slight twisting motion. Remove any excess mortar around the hole before it sets.  |
|      | 5. Leave the fixing undisturbed until the curing time elapses.                                                                                     |
|      | 6. Attach fixture and tighten the bolt to the required installation torque. The applied installation torque cannot exceed T <sub>inst,max</sub> .  |

# Intended use

Installation instruction – anchor rod with inner thread – cleaning with hollow drill bit (special cleaning method)


Annex B 13



| R-KER-II, R-KER-II-S and R-KER-II-W                               |            |
|-------------------------------------------------------------------|------------|
| Intended use Installation instruction – rebar – standard cleaning | Annex B 14 |

|     | Drill hole to the required diameter and depth using a hollow drill bit with vacuum cleaner.                                                        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|
|     | Insert cartridge into dispenser and attach nozzle.     Dispense to waste until even colour is obtained (min. 10 cm).                               |
| 70% | 3. Insert the mixing nozzle to the far end of the hole and inject mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth. |
| *   | Immediately insert the rebar, slowly and with slight twisting motion. Remove any excess mortar around the hole before it sets.                     |
|     | Leave the fixing undisturbed until the curing time elapses.                                                                                        |

| R-KER-II, R-KER-II-S and R-KER-II-W                                                                      |            |
|----------------------------------------------------------------------------------------------------------|------------|
| Intended use Installation instruction – rebar – cleaning with hollow drill bit (special cleaning method) | Annex B 15 |



| R-KER-II, R-KER-II-S and R-KER-II-W                                   |            |
|-----------------------------------------------------------------------|------------|
| Intended use Installation instruction – rebar – overhead installation | Annex B 16 |

Table C1: Characteristic resistance under tension load for threaded rod in uncracked concrete

| Size                                          |                         |                       | M8        | M10      | M12        | M16        | M20                                            | M24  | M30 |
|-----------------------------------------------|-------------------------|-----------------------|-----------|----------|------------|------------|------------------------------------------------|------|-----|
| Steel failure                                 |                         |                       |           |          |            |            |                                                |      |     |
| Steel failure with threaded rod grade 5.8     |                         |                       |           |          |            |            |                                                |      |     |
| Characteristic resistance                     | $N_{Rk,s}$              | [kN]                  | 18        | 29       | 42         | 78         | 122                                            | 176  | 280 |
| Partial safety factor 1)                      | γ <sub>Ms</sub>         | [-]                   |           |          |            | 1.50       |                                                |      |     |
| Steel failure with threaded rod grade 8.8     |                         |                       |           |          |            |            |                                                |      |     |
| Characteristic resistance                     | $N_{Rks}$               | [kN]                  | 29        | 46       | 67         | 125        | 196                                            | 282  | 448 |
| Partial safety factor 1)                      | γMs                     | [-]                   |           |          |            | 1.50       |                                                |      |     |
| Steel failure with threaded rod grade 10.9    |                         |                       |           |          |            |            |                                                |      |     |
| Characteristic resistance                     | $N_{Rk,s}$              | [kN]                  | 36        | 58       | 84         | 157        | 245                                            | 353  | 561 |
| Partial safety factor 1)                      | γMs                     | [-]                   |           |          |            | 1.40       |                                                |      |     |
| Steel failure with threaded rod grade 12.9    |                         |                       |           |          |            |            |                                                |      |     |
| Characteristic resistance                     | N <sub>Rk.s</sub>       | [kN]                  | 43        | 69       | 101        | 188        | 294                                            | 423  | 673 |
| Partial safety factor 1)                      | γMs                     | [-]                   |           |          |            | 1.40       |                                                |      |     |
| Steel failure with stainless steel threaded   |                         |                       |           |          |            |            |                                                |      |     |
| Characteristic resistance                     | N <sub>Rk.s</sub>       | [kN]                  | 25        | 40       | 59         | 109        | 171                                            | 247  | 392 |
| Partial safety factor 1)                      | γMs                     | [-]                   |           |          |            | 1.87       |                                                |      |     |
| Steel failure with stainless steel threaded   |                         |                       |           |          |            |            |                                                |      |     |
| Characteristic resistance                     | N <sub>Rk.s</sub>       | [kN]                  | 29        | 46       | 67         | 125        | 196                                            | 282  | 448 |
| Partial safety factor 1)                      | γ <sub>Ms</sub>         | [-]                   | - 1       |          | ,          | 1.60       |                                                |      |     |
| Steel failure with high corrosion resistant s |                         | , , ,                 |           |          |            |            |                                                |      |     |
| Characteristic resistance                     | N <sub>Rks</sub>        | [kN]                  | 25        | 40       | 59         | 109        | 171                                            | 247  | 392 |
| Partial safety factor 1)                      | γMs                     | [-]                   |           |          |            | 1.87       |                                                |      |     |
| Steel failure with ultra-high strength steel  | •                       |                       |           |          |            |            |                                                |      |     |
| Characteristic resistance                     | N <sub>Rks</sub>        | [kN]                  | 51        | 81       | 118        | 219        | 343                                            | 494  | 785 |
| Partial safety factor 1)                      | γMs                     | [-]                   |           |          |            | 1.5        |                                                |      |     |
| Steel failure with ultra-high strength steel  |                         |                       |           |          |            |            |                                                |      |     |
| Characteristic resistance                     | N <sub>Rk,s</sub>       | [kN]                  | 54        | 87       | 126        | 235        | 367                                            | 529  | 841 |
| Partial safety factor 1)                      | γ <sub>Ms</sub>         | [-]                   |           |          |            | 1.5        |                                                |      |     |
| Steel failure with ultra-high strength steel  |                         |                       |           |          |            |            |                                                |      |     |
| Characteristic resistance                     | N <sub>Rks</sub>        | [kN]                  | 58        | 92       | 134,9      | 251        | 392                                            | 564  | 897 |
| Partial safety factor 1)                      | γMs                     | [-]                   |           |          | , .        | 1.5        | 002                                            |      |     |
| Combined pull-out and concrete cone to        |                         |                       | C20/25 fo | r a work | ina life o | f 50 years | 3                                              |      |     |
| •                                             | unare in unoi           | doned control         | 020/20 10 | 1 u Woll | ing inc o  | i oo your  | <u>*                                      </u> |      |     |
| Characteristic bond resistance                | T                       |                       | I         |          | l          |            |                                                |      |     |
| Temperature range I: 24°C / 40°C              | τ <sub>Rk,ucr,50</sub>  | [N.mm <sup>-2</sup> ] | 16.0      | 15.0     | 15.0       | 13.0       | 10.0                                           | 10.0 | 8.0 |
| Temperature range II: 50°C / 80°C             | τ <sub>Rk,ucr,50</sub>  | [N.mm <sup>-2</sup> ] | 16.0      | 15.0     | 15.0       | 13.0       | 10.0                                           | 10.0 | 8.0 |
| Temperature range III: 80°C / 120°C           | τ <sub>Rk,ucr,50</sub>  | [N.mm <sup>-2</sup> ] | 8.5       | 8.0      | 8.0        | 7.0        | 5.5                                            | 5.5  | 4.5 |
| -                                             | ,,                      | C30/37                |           |          | •          | 1.04       |                                                |      | 1   |
| Increasing factor                             | 216                     | C40/50                |           |          |            | 1.07       |                                                |      |     |
| mercasing racion                              | Ψ <sub>c</sub>          |                       |           |          |            |            |                                                |      |     |
|                                               |                         | C50/60                |           |          |            | 1.09       |                                                |      |     |
|                                               |                         | 24°C / 40°C           |           |          |            | 0.72       |                                                |      |     |
| Sustained load factor                         | $\Psi^{o}_{sus}$        | 50°C / 80°C           |           |          |            | 0.72       |                                                |      |     |
|                                               |                         | 80°C / 120°C          | 0.61      |          |            |            |                                                |      |     |
| Combined pull-out and concrete cone to        | ailure in uncr          |                       | C20/25 fc | r a work | ing life o |            | rs                                             |      |     |
| Characteristic bond resistance                |                         |                       |           |          |            |            |                                                |      |     |
| Temperature range I: 24°C / 40°C              | τ <sub>Rk,ucr,100</sub> | [N.mm <sup>-2</sup> ] | 15.0      | 15.0     | 14.0       | 13.0       | 10.0                                           | 9.5  | 8.0 |
| Temperature range II: 50°C / 80°C             | τ <sub>Rk,ucr,100</sub> | [N.mm <sup>-2</sup> ] | 15.0      | 15.0     | 14.0       | 13.0       | 10.0                                           | 9.5  | 8.0 |
|                                               | ► FKK,UCF, 100          | C30/37                |           |          |            | 1.04       | . 5.0                                          | 0.0  | 0.0 |
| harmanian fastan                              |                         |                       |           |          |            |            |                                                |      |     |
| Increasing factor                             | Ψc                      | C40/50                |           |          |            | 1.07       |                                                |      |     |
|                                               | 1                       | C50/60                | I         |          |            | 1.09       |                                                |      |     |

Characteristic resistance under tension loads for threaded rod in uncracked concrete

# Table C1 (continuation)

| Size                                    |                      |                                            |          |                          |       | M12                       | M16 | M20 | M24 | M30               |
|-----------------------------------------|----------------------|--------------------------------------------|----------|--------------------------|-------|---------------------------|-----|-----|-----|-------------------|
| Concrete cone failure i                 | n uncracked c        | oncrete                                    |          |                          |       |                           |     |     |     |                   |
| Factor for uncracked cor                | ncrete               | k <sub>ucr,N</sub>                         | [-]      | 11.0                     |       |                           |     |     |     |                   |
| Edge distance                           |                      | C <sub>ucr,N</sub>                         | [mm]     | 1.5 · h <sub>ef</sub>    |       |                           |     |     |     |                   |
| Spacing                                 |                      | S <sub>ucr,N</sub>                         | [mm]     | 3.0 · h <sub>ef</sub>    |       |                           |     |     |     |                   |
| Splitting failure                       |                      |                                            |          |                          |       |                           |     |     |     |                   |
| c <sub>cr,sp</sub> for h <sub>min</sub> |                      |                                            |          |                          |       | $2.0 \cdot h_{\text{ef}}$ |     |     | 1.5 | · h <sub>ef</sub> |
| Edge distance                           | interpolation)       |                                            |          |                          |       |                           |     |     |     |                   |
|                                         |                      | $c_{cr,sp}$ for $h^{2} \ge 2 \cdot h_{ef}$ |          | $c_{cr,N}$               |       |                           |     |     |     |                   |
| Spacing                                 |                      | S <sub>cr,sp</sub>                         | [mm]     | 2.0 · c <sub>cr,sp</sub> |       |                           |     |     |     |                   |
| Installation safety facto               | r for combine        | d pull-out, concrete co                    | ne and s | olitting fa              | ilure |                           |     |     |     |                   |
| Installation safety factors for in use  | standard<br>cleaning |                                            |          |                          |       |                           | 1.0 |     |     |                   |
| category I1                             | special cleaning     |                                            | 1.2      |                          |       | 1.0                       |     |     | 1.2 |                   |
| Installation safety factors for in use  | standard<br>cleaning | γinst                                      | 13       | 1.0                      |       |                           |     |     |     |                   |
| category I2                             | special<br>cleaning  |                                            |          | 1.2                      |       |                           | 1.0 |     |     | 1.2               |

<sup>1)</sup> In the absence of other national regulation.
2) h – concrete member thickness.

| R-KER-II, R-KER-II-S and R-KER-II-W                                                              |           |
|--------------------------------------------------------------------------------------------------|-----------|
| Performance Characteristic resistance under tension loads for threaded rod in uncracked concrete | Annex C 2 |

Table C2: Characteristic resistance under tension loads for threaded rod in cracked concrete

| Size                                        |                               |                         | М8          | M10       | M12         | M16      | M20                                                                                                                                                                                             | M24 | M30 |
|---------------------------------------------|-------------------------------|-------------------------|-------------|-----------|-------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| Steel failure                               |                               |                         |             |           |             |          | ı                                                                                                                                                                                               |     |     |
| Steel failure with threaded rod grade 5.8   |                               |                         |             |           |             |          |                                                                                                                                                                                                 |     |     |
| Characteristic resistance                   | $N_{Rk,s}$                    | [kN]                    | 18          | 29        | 42          | 78       | 122                                                                                                                                                                                             | 176 | 280 |
| Partial safety factor 1)                    | γMs                           | [-]                     |             |           |             | 1.50     |                                                                                                                                                                                                 |     |     |
| Steel failure with threaded rod grade 8.8   |                               |                         |             |           |             |          |                                                                                                                                                                                                 |     |     |
| Characteristic resistance                   | $N_{Rk,s}$                    | [kN]                    | 29          | 46        | 67          | 125      | 196                                                                                                                                                                                             | 282 | 448 |
| Partial safety factor 1)                    | γMs                           | [-]                     |             |           |             | 1.50     |                                                                                                                                                                                                 |     |     |
| Steel failure with threaded rod grade 10.9  |                               |                         |             |           |             |          |                                                                                                                                                                                                 |     |     |
| Characteristic resistance                   | $N_{Rk,s}$                    | [kN]                    | 36          | 58        | 84          | 157      | 245                                                                                                                                                                                             | 353 | 561 |
| Partial safety factor 1)                    | γ <sub>Ms</sub>               | [-]                     |             | •         |             | 1.40     |                                                                                                                                                                                                 | •   |     |
| Steel failure with threaded rod grade 12.9  |                               |                         |             |           |             |          |                                                                                                                                                                                                 |     |     |
| Characteristic resistance                   | $N_{Rk,s}$                    | [kN]                    | 43          | 69        | 101         | 188      | 294                                                                                                                                                                                             | 423 | 673 |
| Partial safety factor 1)                    | γMs                           | [-]                     |             |           |             | 1.40     | I                                                                                                                                                                                               | L   |     |
| Steel failure with stainless steel threaded | •                             |                         |             |           |             |          |                                                                                                                                                                                                 |     |     |
| Characteristic resistance                   | N <sub>Rk.s</sub>             | [kN]                    | 25          | 40        | 59          | 109      | 171                                                                                                                                                                                             | 247 | 392 |
| Partial safety factor 1)                    | γ <sub>Ms</sub>               | [-]                     | -           |           |             | 1.87     |                                                                                                                                                                                                 |     |     |
| Steel failure with stainless steel threaded | •                             | , ,,                    |             |           |             |          |                                                                                                                                                                                                 |     |     |
| Characteristic resistance                   | $N_{Rk,s}$                    | [kN]                    | 29          | 46        | 67          | 125      | 196                                                                                                                                                                                             | 282 | 448 |
| Partial safety factor 1)                    | γ <sub>Ms</sub>               | [-]                     |             |           |             | 1.60     |                                                                                                                                                                                                 |     |     |
| Steel failure with high corrosion resistant |                               |                         |             |           |             |          |                                                                                                                                                                                                 |     |     |
| Characteristic resistance                   | N <sub>Rk,s</sub>             | [kN]                    | 25          | 40        | 59          | 109      | 171                                                                                                                                                                                             | 247 | 392 |
| Partial safety factor 1)                    | γMs                           | [-]                     |             |           |             | 1.87     |                                                                                                                                                                                                 |     | 002 |
| Steel failure with ultra-high strength stee |                               |                         |             |           |             | 1.07     |                                                                                                                                                                                                 |     |     |
| Characteristic resistance                   | N <sub>Rk.s</sub>             | [kN]                    | 51          | 81        | 118         | 219      | 343                                                                                                                                                                                             | 494 | 785 |
| Partial safety factor 1)                    | γ <sub>KK,s</sub>             | [-]                     | 01          | 01        | 110         | 1.5      | 040                                                                                                                                                                                             | 707 | 700 |
| Steel failure with ultra-high strength stee |                               |                         |             |           |             | 1.0      |                                                                                                                                                                                                 |     |     |
| Characteristic resistance                   | N <sub>Rk,s</sub>             | [kN]                    | 54          | 87        | 126         | 235      | 367                                                                                                                                                                                             | 529 | 841 |
| Partial safety factor 1)                    | γ <sub>Ms</sub>               | [-]                     | 01          | 0.        | 120         | 1.5      | 001                                                                                                                                                                                             | 020 | 011 |
| Steel failure with ultra-high strength stee |                               |                         |             |           |             | 1.0      |                                                                                                                                                                                                 |     |     |
| Characteristic resistance                   | N <sub>Rk.s</sub>             | [kN]                    | 58          | 92        | 134,9       | 251      | 392                                                                                                                                                                                             | 564 | 897 |
| Partial safety factor 1)                    |                               | [-]                     | - 00        | UL.       | 101,0       | 1.5      | 002                                                                                                                                                                                             | 001 | 001 |
| •                                           | γ <sub>Ms</sub>               |                         | 0/25 for /  | o workin  | a life of E |          |                                                                                                                                                                                                 |     |     |
| Combined pull-out and concrete cone         | ialiure ili crac              | keu concrete C2         | 0/25 101 6  | a WOIKIII | y ille oi s | u years  |                                                                                                                                                                                                 |     |     |
| Characteristic bond resistance              |                               |                         | ı           | ı         | 1           | ı        | Ι                                                                                                                                                                                               | ı   | ı   |
| Temperature range I: 24°C / 40°C            | τ <sub>Rk,cr,50</sub>         | [N.mm <sup>-2</sup> ]   | 10.0        | 11.0      | 11.0        | 9.5      | 7.5                                                                                                                                                                                             | 7.0 | 5.0 |
| Temperature range II: 50°C / 80°C           | τ <sub>Rk,cr,50</sub>         | [N.mm <sup>-2</sup> ]   | 10.0        | 11.0      | 11.0        | 9.5      | 7.5                                                                                                                                                                                             | 7.0 | 5.0 |
| Temperature range III: 80°C / 120°C         | τ <sub>Rk,cr,50</sub>         | [N.mm <sup>-2</sup> ]   | 5.0         | 6.0       | 6.0         | 5.0      | 4.0                                                                                                                                                                                             | 4.0 | 3.0 |
|                                             | ,,                            | C30/37                  |             | 1         | · L         | 1.04     | l                                                                                                                                                                                               | L   |     |
| Increasing factor                           |                               | C40/50                  |             |           |             | 1.07     |                                                                                                                                                                                                 |     |     |
| increasing ractor                           | Ψc                            |                         |             |           |             |          |                                                                                                                                                                                                 |     |     |
|                                             |                               | C50/60                  |             |           |             | 1.09     |                                                                                                                                                                                                 |     |     |
|                                             |                               | 24°C / 40°C             |             |           |             | 0.72     |                                                                                                                                                                                                 |     |     |
| Sustained load factor                       | $\Psi^{o}_{sus}$              | 50°C / 80°C             |             |           |             | 0.72     |                                                                                                                                                                                                 |     |     |
|                                             | 80°C / 120°C 0.61             |                         |             |           |             |          |                                                                                                                                                                                                 |     |     |
| Combined pull-out and concrete cone         | failure in crac               |                         | 0/25 for a  | a working | a life of 1 | 00 years |                                                                                                                                                                                                 |     |     |
| Characteristic bond resistance              | .anaro in orac                |                         | J. 20 107 ( | . HOIMI   | g 1110 Oi 1 | - Jours  |                                                                                                                                                                                                 |     |     |
| Temperature range I: 24°C / 40°C            | Τ -                           | [N.mm <sup>-2</sup> ]   | 9.5         | 10.0      | 10.5        | 9.5      | 7.5                                                                                                                                                                                             | 7.0 | 5.0 |
| remoetatute tande tii 74 G / 40 G           | τ <sub>Rk,ucr,100</sub>       |                         |             |           |             |          |                                                                                                                                                                                                 |     | 5.0 |
|                                             |                               | I IN mm <sup>-4</sup> i | 9.5         | 10.0      | 10.5        | 9.5      | 7.5                                                                                                                                                                                             | 7.0 | 5.0 |
| Temperature range II: 50°C / 80°C           | τ <sub>Rk,ucr,100</sub>       | [N.mm <sup>-2</sup> ]   |             |           | 1           | l        |                                                                                                                                                                                                 | l . |     |
|                                             | τ <sub>Rk,ucr,100</sub>       | C30/37                  |             | 1         |             | 1.04     |                                                                                                                                                                                                 | I.  |     |
|                                             | τ <sub>Rk,ucr,100</sub><br>Ψc |                         |             | 1         |             | 1.04     | 245     353       294     423       171     247       196     282       171     247       343     494       367     529       392     564       7.5     7.0       7.5     7.0       7.5     7.0 |     |     |

# **Performance**

Characteristic resistance under tension loads for threaded rod in cracked concrete

# Table C2 (continuation)

| Size                     |                   |                                                                                                                                                                                     |             |                       | M10                 | M12                       | M16                       | M20 | M24 | M30               |
|--------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|---------------------|---------------------------|---------------------------|-----|-----|-------------------|
| Concrete cone fa         | ilure in cra      | cked concrete                                                                                                                                                                       |             |                       |                     |                           |                           |     |     |                   |
| Factor for cracked cond  | crete             | k <sub>cr,N</sub>                                                                                                                                                                   | [-]         |                       |                     |                           | 7.7                       |     |     |                   |
| Edge distance            |                   | C <sub>cr,N</sub>                                                                                                                                                                   | [mm]        |                       |                     |                           | 1.5 · h <sub>ef</sub>     |     |     |                   |
| Spacing                  |                   | S <sub>cr,N</sub>                                                                                                                                                                   | [mm]        |                       |                     |                           | $3.0 \cdot h_{\text{ef}}$ |     |     |                   |
| Splitting failure        |                   |                                                                                                                                                                                     |             |                       |                     |                           |                           |     |     |                   |
|                          |                   | $c_{cr,sp}$ for $h_{min}$                                                                                                                                                           |             |                       |                     | $2.0 \cdot h_{\text{ef}}$ |                           |     | 1.5 | · h <sub>ef</sub> |
| Edge distance            |                   | $\begin{array}{c} c_{\text{cr,sp}} \text{ for} \\ h_{\text{min}} < h^{\; 2)} < 2 \cdot h_{\text{ef}} \\ (c_{\text{cr,sp}} \text{ from linear} \\ \text{interpolation}) \end{array}$ | [mm]        |                       | 2 x h <sub>ef</sub> |                           |                           |     |     |                   |
|                          |                   | $c_{cr,sp}$ for $h^{2} \ge 2 \cdot h_{ef}$                                                                                                                                          |             | C <sub>cr,N</sub>     |                     |                           |                           |     |     |                   |
| Spacing                  |                   | S <sub>cr,sp</sub>                                                                                                                                                                  | [mm]        | $2.0 \cdot c_{cr,sp}$ |                     |                           |                           |     |     |                   |
| Installation safety fact | or for combin     | ned pull-out, concrete of                                                                                                                                                           | cone and sp | olitting fai          | lure                |                           |                           |     |     |                   |
| Installation safety      |                   |                                                                                                                                                                                     |             |                       |                     |                           | 1.0                       |     |     |                   |
| category I1              | special cleaning  | Yinst                                                                                                                                                                               | [-]         | 1.2                   |                     |                           |                           |     |     | 1.2               |
| Installation safety      | standard cleaning | γinst                                                                                                                                                                               | [-]         | 1.0                   |                     |                           |                           |     |     |                   |
| category I2              | special cleaning  |                                                                                                                                                                                     |             | 1.2                   |                     |                           | 1.0                       |     |     | 1.2               |

<sup>1)</sup> In the absence of other national regulation.
2) h – concrete member thickness.

| R-KER-II, R-KER-II-S and R-KER-II-W                                                            |           |
|------------------------------------------------------------------------------------------------|-----------|
| Performance Characteristic resistance under tension loads for threaded rod in cracked concrete | Annex C 4 |

Table C3: Characteristic resistance under tension load for rod with inner thread in uncracked concrete

| Size                                       | M6<br>/Ø10        | M8/<br>Ø12            | M10/<br>Ø16 | M12/<br>Ø16  | M16/<br>Ø24 |                                 |      |  |  |
|--------------------------------------------|-------------------|-----------------------|-------------|--------------|-------------|---------------------------------|------|--|--|
| Steel failure                              |                   |                       |             |              |             |                                 |      |  |  |
| Steel failure with rod with inner thread   | grade 5.8         |                       |             |              |             |                                 |      |  |  |
| Characteristic resistance                  | N <sub>Rk,s</sub> | s [kN]                | 10          | 18           | 29          | 42                              | 78   |  |  |
| Partial safety factor 1)                   | γMs               | [-]                   |             |              | 1.50        |                                 |      |  |  |
| Steel failure with rod with inner thread   | grade 8.8         |                       |             |              |             |                                 |      |  |  |
| Characteristic resistance                  | N <sub>Rk,s</sub> | s [kN]                | 16          | 29           | 46          | 67                              | 125  |  |  |
| Partial safety factor 1)                   | γMs               | [-]                   |             |              | 1.50        |                                 |      |  |  |
| Steel failure with stainless steel rod wit | h inner thre      | ad threaded ro        | d A4-70     |              |             |                                 |      |  |  |
| Characteristic resistance                  | NRk,              | s [kN]                | 14          | 25           | 40          | 59                              | 109  |  |  |
| Partial safety factor 1)                   | γMs               | [-]                   |             |              | 1.87        |                                 |      |  |  |
| Steel failure with stainless steel rod wit | h inner thre      | ad A4-80              |             |              |             |                                 |      |  |  |
| Characteristic resistance                  | N <sub>Rk,s</sub> | s [kN]                | 16          | 29           | 46          | 67                              | 125  |  |  |
| Partial safety factor 1)                   | γMs               | [-]                   |             |              | 1.60        |                                 |      |  |  |
| Steel failure with high corrosion resista  | nt steel gra      | de 70                 |             |              |             |                                 |      |  |  |
| Characteristic resistance                  | N <sub>Rk,s</sub> | s [kN]                | 14          | 25           | 40          | 59                              | 109  |  |  |
| Partial safety factor 1)                   | γMs               | [-]                   |             |              |             |                                 |      |  |  |
| Combined pull-out and concrete cor         | ne failure ir     | n uncracked co        | ncrete C20  | )/25 for a w | orking life | of 50 years                     |      |  |  |
| Temperature range I: 24°C / 40°C           | τRk,ucr,50        | [N.mm <sup>-2</sup> ] | 11.0        | 14.0         | 11.0        | 11.0                            | 8.0  |  |  |
| Temperature range II: 50°C / 80°C          | TRk,ucr,50        | [N.mm <sup>-2</sup> ] | 11.0        | 14.0         | 11.0        | 11.0                            | 8.0  |  |  |
| Temperature range III: 80°C / 120°C        | τRk,ucr,50        | [N.mm <sup>-2</sup> ] | 6.0         | 7.0          | 6.0         | 6.0                             | 4.0  |  |  |
|                                            |                   | C30/37                |             | 1.           | 04          | 67  67  59  67  11.0  11.0  6.0 | 1.00 |  |  |
| Increasing factor                          | Ψc                | C40/50                |             | 1.           | 07          |                                 | 1.00 |  |  |
|                                            | Υ -               | C50/60                |             |              | 09          |                                 | 1.00 |  |  |
|                                            |                   | 24°C/40°C             |             | ···          | 0.72        |                                 |      |  |  |
|                                            |                   | 50°C/80°C             |             |              | 0.72        |                                 |      |  |  |
| Sustained load factor                      | $\Psi^0_{sus}$    |                       |             |              | 0.72        |                                 |      |  |  |
|                                            |                   | 80°C /<br>120°C       |             |              | 0.61        |                                 |      |  |  |
| Combined pull-out and concrete cor         | e failure ir      |                       | ncrete C20  | 1/25 for a w | orkina life | of 100 year                     | 'S   |  |  |
| •                                          | TRk,ucr,10        |                       |             |              |             |                                 |      |  |  |
| Temperature range I: 24°C / 40°C           | 0                 | [N.mm <sup>-2</sup> ] | 10.0        | 13.0         | 10.0        | 11.0                            | 8.0  |  |  |
| Temperature range II: 50°C / 80°C          | TRk,ucr,10        | [N.mm <sup>-2</sup> ] | 10.0        | 13.0         | 10.0        | 11.0                            | 8.0  |  |  |
|                                            |                   | C30/37                |             | 1.           | 04          |                                 | 1.00 |  |  |
| Increasing factor                          | ψε                | C40/50                |             | 1.           | 07          |                                 | 1.00 |  |  |
| •                                          |                   | C50/60                |             | 1.00         |             |                                 |      |  |  |

| R-KER-II, R-KER-II-S and R-KER-II-W                                                                       |           |
|-----------------------------------------------------------------------------------------------------------|-----------|
| Performance Characteristic resistance under tension loads for rod with inner thread in uncracked concrete | Annex C 5 |

# Table C3: (continuation)

| Resistance to conc                       | rete cone fa         | ilure in uncracked co                                                                                                                                                            | oncrete   |                                                         |  |  |  |  |  |
|------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------|--|--|--|--|--|
| Factor for uncracked concrete kucr,N [-] |                      |                                                                                                                                                                                  | 11.0      |                                                         |  |  |  |  |  |
| Edge distance                            |                      | Cucr,N                                                                                                                                                                           | [mm]      | 1.5 ⋅ h <sub>ef</sub>                                   |  |  |  |  |  |
| Spacing                                  |                      | Sucr,N                                                                                                                                                                           | [mm]      | 3.0 · hef                                               |  |  |  |  |  |
| Splitting failure                        |                      |                                                                                                                                                                                  |           |                                                         |  |  |  |  |  |
|                                          |                      | Ccr,sp for hmin                                                                                                                                                                  |           | 2.0 · hef 1.5 · he                                      |  |  |  |  |  |
| Edge distance                            |                      | $\begin{array}{c} c_{\text{cr,sp}} \text{ for} \\ h_{\text{min}} < h^{2}) < 2 \cdot h_{\text{ef}} \\ (c_{\text{cr,sp}} \text{ from linear} \\ \text{interpolation}) \end{array}$ | [mm]      | 2 x h <sub>ef</sub> h <sub>min</sub> C <sub>cr.sp</sub> |  |  |  |  |  |
|                                          |                      | Ccr,sp for h <sup>2)</sup> ≥ 2 ·<br>hef                                                                                                                                          |           | Ccr,N                                                   |  |  |  |  |  |
| Spacing                                  |                      | <b>S</b> cr,sp                                                                                                                                                                   | [mm]      | 2.0 · Ccr,sp                                            |  |  |  |  |  |
| Installation safety f                    | actor for co         | mbined pull-out, con                                                                                                                                                             | crete con | e and splitting failure                                 |  |  |  |  |  |
| Installation safety factors for use      | standard cleaning    |                                                                                                                                                                                  |           | 1.0                                                     |  |  |  |  |  |
| category I1 <sup>1)</sup>                | special cleaning     | 260-4                                                                                                                                                                            | [-]       | 1.0                                                     |  |  |  |  |  |
| Installation safety factors for use      | standard<br>cleaning | γinst                                                                                                                                                                            | 1-1       | 1.0                                                     |  |  |  |  |  |
| category I21)                            | special cleaning     |                                                                                                                                                                                  |           | 1.0                                                     |  |  |  |  |  |

<sup>1)</sup> In the absence of other national regulation.
2) h – concrete member thickness.

| R-KER-II, R-KER-II-S and R-KER-II-W                                                                       |           |
|-----------------------------------------------------------------------------------------------------------|-----------|
| Performance Characteristic resistance under tension loads for rod with inner thread in uncracked concrete | Annex C 5 |

Table C4: Characteristic resistance under tension loads for rod with inner thread in cracked concrete

| Size                                             |             |                |     | M6<br>/Ø10            | M8/<br>Ø12 | M10/<br>Ø16 | M12/<br>Ø16 | M16/<br>Ø24                                                                                                                              |      |
|--------------------------------------------------|-------------|----------------|-----|-----------------------|------------|-------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|------|
| Steel failure                                    |             |                |     |                       |            |             |             |                                                                                                                                          |      |
| Steel failure with rod with inner thread grade   | 5.8         |                |     |                       |            |             |             |                                                                                                                                          |      |
| Characteristic resistance                        |             | NRk,s          |     | [kN]                  | 10         | 18          | 29          | 42                                                                                                                                       | 78   |
| Partial safety factor 1)                         |             | γMs            |     | [-]                   |            |             | 1.50        |                                                                                                                                          |      |
| Steel failure with rod with inner thread grade   | 8.8         |                |     |                       |            |             |             |                                                                                                                                          |      |
| Characteristic resistance                        |             |                |     |                       | 16         | 29          | 46          | 67                                                                                                                                       | 125  |
| Partial safety factor 1)                         |             | γMs            |     | [-]                   |            |             | 1.50        |                                                                                                                                          |      |
| Steel failure with stainless steel rod with inne | r thre      | ead A4         | -70 |                       |            |             |             |                                                                                                                                          |      |
| Characteristic resistance                        |             | NRk,           | s   | [kN]                  | 14         | 25          | 40          | 59                                                                                                                                       | 109  |
| Partial safety factor 1)                         |             |                |     |                       |            |             |             |                                                                                                                                          |      |
| Steel failure with stainless steel rod with inne | r thre      | ead rod        | A4- | -80                   |            |             |             |                                                                                                                                          |      |
| Characteristic resistance                        |             | NRk,           | s   | [kN]                  | 16         | 29          | 46          | 67                                                                                                                                       | 125  |
| Partial safety factor 1)                         | Things (M.) |                |     |                       |            |             |             |                                                                                                                                          |      |
| Steel failure with high corrosion resistant stee | el gra      | de 70          |     |                       |            |             |             |                                                                                                                                          |      |
| Characteristic resistance                        |             | NRk,s          |     | [kN]                  | 14         | 25          | 40          | 59                                                                                                                                       | 109  |
| Partial safety factor 1)                         |             |                |     | [-]                   |            |             | 1.87        |                                                                                                                                          |      |
| Combined pull-out and concrete cone fails        | ure i       | n cracl        | ked | concrete C            | 20/25 for  | a workir    | ng life of  | 50 years                                                                                                                                 |      |
| Temperature range I: 24°C / 40°C                 | τΕ          | Rk,cr,50       |     | [N.mm <sup>-2</sup> ] | 10.0       | 10.0        | 9.5         | 9.0                                                                                                                                      | 4.0  |
| Temperature range II: 50°C / 80°C                | τκ          | Rk,cr,50       |     | [N.mm <sup>-2</sup> ] | 10.0       | 10.0        | 9.5         | 9.0                                                                                                                                      | 4.0  |
| Temperature range III: 80°C / 120°C              | τR          | Rk,cr,50       | i   | [N.mm <sup>-2</sup> ] | 5.0        | 6.0         | 5.0         | 5.0                                                                                                                                      | 2.0  |
|                                                  |             | ,,             |     | C30/37                |            | 1.          | 04          | .87 <b>fe of 50 years</b> 9.5 9.0 4 9.5 9.0 4 5.0 5.0 2                                                                                  | 1.00 |
| Increasing factor                                |             | Ψc             |     | C40/50                |            | 1.          | 07          |                                                                                                                                          | 1.00 |
| 3                                                |             | 1              |     | C50/60                |            | 1.          | 09          | <b>Ø16</b>   42   67   59   67   59   9.0   9.0   5.0   5.0   6   6   6   6   6   6   6   6   6                                          | 1.00 |
|                                                  |             |                | 2   | 4°C/40°C              |            |             | 0.72        |                                                                                                                                          |      |
| Sustained load factor                            | 3           | $\Psi^0_{sus}$ | 5   | 0°C/80°C              |            |             |             |                                                                                                                                          |      |
|                                                  |             | 343            | 80  | °C / 120°C            |            |             | 0.61        |                                                                                                                                          |      |
| Combined pull-out and concrete cone fails        | ure i       | n cracl        | ked | concrete C            | 20/25 for  | a workir    | ng life of  | 100 years                                                                                                                                | 3    |
| Temperature range I: 24°C / 40°C                 |             | k.cr.100       |     | [N.mm <sup>-2</sup> ] | 7.0        | 9.5         | 9.0         |                                                                                                                                          | 4.0  |
| Temperature range II: 50°C / 80°C                | τRI         | k.cr.100       |     | [N.mm <sup>-2</sup> ] | 7.0        | 9.5         | 9.0         | 8.5                                                                                                                                      | 4.0  |
|                                                  |             |                |     | C30/37                |            | 1.          | 04          | •                                                                                                                                        | 1.00 |
| Increasing factor                                |             | ψс             |     | C40/50                |            | 1.          | 07          | 29 42 1.50 46 67 1.50 40 59 1.87 46 67 1.60 40 59 1.87 1.60 40 59 1.87 1.60 59 1.87 1.60 59 1.87 1.60 1.60 1.60 1.60 1.60 1.61 1.61 1.61 | 1.00 |
| -                                                |             |                |     | C50/60                |            | 1.          | 09          |                                                                                                                                          | 1.00 |

**Performance** 

Characteristic resistance under tension loads for rod with inner thread in cracked concrete

# Table C4: (continuation)

| Cone failure in cracked concrete    |                                                                          |                                   |          |                                                                            |  |  |  |  |
|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------|----------|----------------------------------------------------------------------------|--|--|--|--|
| Factor for cracked concrete         |                                                                          | <b>K</b> cr,N                     | [-]      | 7.7                                                                        |  |  |  |  |
| Edge distance                       | •                                                                        | Ccr,N                             | [mm]     | 1.5 · h <sub>ef</sub>                                                      |  |  |  |  |
| Spacing                             |                                                                          | Scr,N                             | [mm]     | 3.0 · hef                                                                  |  |  |  |  |
| Splitting failure                   |                                                                          |                                   |          |                                                                            |  |  |  |  |
|                                     | Ccr,sp fo                                                                | r h <sub>min</sub>                |          | 2.0 · hef 1.5 · hef                                                        |  |  |  |  |
| Edge distance                       | Ccr,sp<br>h <sub>min</sub> < h <sup>2)</sup><br>(Ccr,sp froi<br>interpol | < 2 · h <sub>ef</sub><br>m linear | [mm]     | 2 x h <sub>ef</sub> h <sub>min</sub> C <sub>cr,Np</sub> C <sub>cr,Sp</sub> |  |  |  |  |
|                                     |                                                                          | $c_{cr,sp}$ for $h^{2)} \ge 2$ .  |          | Ccr,N                                                                      |  |  |  |  |
| Spacing                             | Scr,                                                                     | <u> </u>                          | [mm]     | 2.0 · Ccr,sp                                                               |  |  |  |  |
| Installation safety factor for comb |                                                                          | t, concrete                       | cone and | splitting failure                                                          |  |  |  |  |
| Installation safety factors for use | standard cleaning                                                        |                                   |          | 1.0                                                                        |  |  |  |  |
| category I1                         | special cleaning                                                         |                                   | [-]      | 1.0                                                                        |  |  |  |  |
| Installation safety factors for use | standard<br>cleaning                                                     | γinst                             | 1-3      | 1.0                                                                        |  |  |  |  |
| category I2                         | special cleaning                                                         |                                   |          | 1.0                                                                        |  |  |  |  |

<sup>1)</sup> In the absence of other national regulation.

# R-KER-II, R-KER-II-S and R-KER-II-W

# **Performance**

Characteristic resistance under tension loads for rod with inner thread in cracked concrete

 $<sup>^{2)}</sup>$  h – concrete member thickness.

Table C5: Characteristic resistance under tension load for rebar in uncracked concrete

| Size                                  | e                                      |                              |            |          |                       | Ø8                  | Ø10      | Ø12       | Ø14              | Ø16                      | Ø20      | Ø25  | Ø32               |
|---------------------------------------|----------------------------------------|------------------------------|------------|----------|-----------------------|---------------------|----------|-----------|------------------|--------------------------|----------|------|-------------------|
| Steel failure with re                 | ebar                                   |                              |            |          |                       |                     |          |           |                  |                          |          |      |                   |
| Characteristic resis                  | stance                                 |                              | Ν          | Rk,s     | [kN]                  |                     |          |           | As <sup>3)</sup> | · fuk <sup>4)</sup>      |          |      |                   |
| Partial safety factor                 | or <sup>1)</sup>                       |                              | γ          | /Ms      | [-]                   |                     |          |           | 1.               | 40                       |          |      |                   |
| Combined pull-or                      | ut and co                              | oncrete co                   | ne fa      | ilure in | uncracked o           | oncret              | e C20/2  | 25 for a  | workin           | g life o                 | f 50 yea | ars  |                   |
| Temperature range                     | e I: 24°C                              | / 40°C                       | τRk,       | ucr,50   | [N.mm <sup>-2</sup> ] | 13.0                | 14.0     | 14.0      | 13.0             | 13.0                     | 10.0     | 9.0  | 7.5               |
| Temperature range                     |                                        |                              | τRk,       | ,ucr,50  | [N.mm <sup>-2</sup> ] | 13.0                | 14.0     | 14.0      | 13.0             | 13.0                     | 10.0     | 9.0  | 7.5               |
| Temperature range 120°C               | Temperature range III: 80°C /<br>120°C |                              | τRk,       | ucr,50   | [N.mm <sup>-2</sup> ] | 7.0                 | 7.0      | 7.0       | 7.0              | 7.0                      | 5.5      | 5.0  | 4.0               |
|                                       |                                        |                              |            |          | C30/37                |                     |          |           | 1.               | 04                       |          |      |                   |
| Increasing factor                     |                                        |                              | ١          | ψc       | C40/50                |                     |          |           | 1.               | 07                       |          |      |                   |
|                                       |                                        |                              |            |          | C50/60                | 1.09                |          |           |                  |                          |          |      |                   |
|                                       |                                        |                              |            |          | 24°C/40°C             |                     |          |           | 0.               | 72                       |          |      |                   |
| Sustained load fac                    | ctor                                   |                              | Ψ          | o<br>sus | 50°C/80°C             |                     |          |           | 0.               | 72                       |          |      |                   |
| 31                                    |                                        |                              |            | sus      | 80°C /<br>120°C       |                     |          |           | 0.               | 61                       |          |      |                   |
| Combined pull-or                      | ut and co                              | oncrete co                   | ne fa      | ilure in | uncracked o           | oncret              | e C20/2  | 25 for a  | workin           | g life o                 | f 100 ye | ears |                   |
| Temperature range                     | e I: 24°C                              | / 40°C                       | τRk,ι      | ucr,100  | [N.mm <sup>-2</sup> ] | 12.0                | 14.0     | 14.0      | 12.0             | 12.0                     | 10.0     | 8.5  | 7.5               |
| Temperature range II: 50°C / 80°C τε  |                                        |                              | τRk.ι      | ucr.100  | [N.mm <sup>-2</sup> ] | 12.0                | 14.0     | 14.0      | 12.0             | 12.0                     | 10.0     | 8.5  | 7.5               |
|                                       |                                        |                              |            |          | C30/37                |                     |          |           | 1.               | 04                       |          |      |                   |
| Increasing factor                     |                                        |                              | Ψο         |          | C40/50                |                     |          |           | 1.               | 07                       |          |      |                   |
|                                       |                                        |                              |            |          | C50/60                |                     |          |           | 1.               | 09                       |          |      |                   |
| Concrete cone fa                      |                                        |                              | cond       | crete    |                       | 1                   |          |           |                  |                          |          |      |                   |
| Factor for non-cra                    | cked cor                               | ncrete                       | <b>k</b> ι | ucr.N    | [-]                   | 11.0                |          |           |                  |                          |          |      |                   |
| Edge distance                         |                                        |                              | Cı         | ucr.N    | [mm]                  | 1.5 · hef           |          |           |                  |                          |          |      |                   |
| Spacing                               |                                        |                              | Su         | ucr.N    | [mm]                  | 3.0 · hef           |          |           |                  |                          |          |      |                   |
| Splitting failure                     |                                        | Ι                            | <u> </u>   |          |                       |                     |          |           |                  |                          |          | 4 =  |                   |
|                                       |                                        |                              | for h      |          |                       |                     |          | 2.0       | · hef            |                          |          | 1.5  | · h <sub>ef</sub> |
| Edge distance                         |                                        | Ccr<br>hmin < h<br>(Ccr.sp f |            | · hef    | [mm]                  | 2 x h <sub>er</sub> |          |           |                  |                          |          |      |                   |
|                                       |                                        | ·                            | olatio     | ,        |                       |                     |          |           |                  | cr,Np C <sub>cr,sp</sub> |          |      |                   |
| On a sin n                            |                                        | Ccr.sp for                   |            | ∠ · Nef  | f 3                   |                     |          |           |                  | r.N                      |          |      |                   |
| Spacing                               | . fact-                                |                              | cr.sp      |          | [mm]                  |                     | - m !##! | a felli   |                  | Ccr.sp                   |          |      |                   |
| Installation safety Installation      |                                        |                              | - 1        | uii-out. | concrete co           | ne and              | spiittin | ig tallur |                  | ^                        |          |      |                   |
| safety factors for                    |                                        | lard cleani<br>cial cleanin  |            |          |                       | 1.2                 |          |           |                  | .0<br>.0                 |          |      | 1.2               |
| use category I1 Installation          | •                                      | lard cleani                  | _          | γinst    | [-]                   |                     |          |           |                  | .2                       |          |      |                   |
| safety factors for                    | fety factors for                       |                              |            | - '      |                       | 1.2                 |          |           |                  |                          |          |      | 1.2               |
| use category I2  1) In the absence of |                                        |                              | •          | ,        |                       | 1.2                 |          |           |                  |                          |          |      |                   |

<sup>&</sup>lt;sup>1)</sup> In the absence of other national regulation.

| R-KER-II, R-KER-II-S and R-KER-II-W                                                       |           |
|-------------------------------------------------------------------------------------------|-----------|
| Performance Characteristic resistance under tension loads for rebar in uncracked concrete | Annex C 7 |

 $<sup>^{2)}</sup>$  h – concrete member thickness.

<sup>3)</sup> Stressed cross section of the steel.

<sup>&</sup>lt;sup>4)</sup> Acc. to EN 1992-1-1.

Table C6: Characteristic resistance under tension loads for rebar in cracked concrete

| Size                                      | ze       |                            |            |           |                       | Ø8                    | Ø10      | Ø12      | Ø14                 | Ø16                 | Ø20     | Ø25   | Ø32               |
|-------------------------------------------|----------|----------------------------|------------|-----------|-----------------------|-----------------------|----------|----------|---------------------|---------------------|---------|-------|-------------------|
| Steel failure with rel                    | bar      |                            |            |           |                       |                       |          |          |                     |                     |         |       |                   |
| Characteristic resist                     | ance     |                            | N          | Rk,s      | [kN]                  |                       |          |          | $As^{3)}$           | · fuk <sup>4)</sup> |         |       |                   |
| Partial safety factor                     | 1)       |                            | γ          | /Ms       | [-]                   |                       |          |          | 1.                  | 40                  |         |       |                   |
| Combined pull-out                         | t and c  | oncrete c                  | one fa     | ailure ii | n cracked cor         | ncrete (              | C20/25   | for a w  | orking              | life of 5           | 0 years | 3     |                   |
| Temperature range                         | I: 24°C  | : / 40°C                   | τRi        | k,cr,50   | [N.mm <sup>-2</sup> ] | 8                     | 9        | 10       | 10                  | 8.5                 | 7.5     | 6     | 3.5               |
| Temperature range                         |          |                            | τRi        | k,cr,50   | [N.mm <sup>-2</sup> ] | 8                     | 9        | 10       | 10                  | 8.5                 | 7.5     | 6     | 3.5               |
| Temperature range III: 80°C / 120°C       |          |                            | τRI        | k,cr,50   | [N.mm <sup>-2</sup> ] | 4.5                   | 5        | 5        | 5                   | 4.5                 | 4       | 3     | 2                 |
|                                           |          |                            |            |           | C30/37                |                       |          |          | 1.                  | 04                  |         |       |                   |
| Increasing factor                         |          |                            | 1          | ψc        | C40/50                |                       |          |          | 1.                  | 07                  |         |       |                   |
|                                           |          |                            |            |           | C50/60                |                       |          |          | 1.                  | 09                  |         |       |                   |
|                                           |          |                            |            |           | 24°C/40°C             |                       |          |          | 0.                  | 72                  |         |       |                   |
| Sustained load fact                       | or       |                            | u.         | VO<br>SUS | 50°C/80°C             |                       |          |          | 0.                  | 72                  |         |       |                   |
| Sustained load factor                     |          |                            | r          | sus       | 80°C /                |                       |          |          | 0                   | 61                  |         |       |                   |
|                                           |          |                            | 120°C 0.61 |           |                       |                       |          |          |                     |                     |         |       |                   |
| Combined pull-out                         |          |                            | one fa     | ailure ii | n non-cracked         | conci                 | rete C2  | 0/25 for | r a worl            | king life           | of 100  | years |                   |
| Temperature range                         |          |                            | τRk        | ,cr,100   | [N.mm <sup>-2</sup> ] | 7.5                   | 9        | 10       | 10                  | 8.5                 | 7.5     | 6     | 3.5               |
| Temperature range                         | II: 50°C | C / 80°C                   | τRk        | ,cr,100   | [N.mm <sup>-2</sup> ] | 7.5                   | 9        | 10       | 10                  | 8.5                 | 7.5     | 6     | 3.5               |
|                                           |          |                            |            |           | C30/37                | 1.04                  |          |          |                     |                     |         |       |                   |
| Increasing factor                         |          |                            | ψο         | ψc        | C40/50                |                       |          |          | 1.                  | 07                  |         |       |                   |
|                                           |          |                            |            |           | C50/60                |                       |          |          | 1.                  | 09                  |         |       |                   |
| Concrete cone fail                        | lure in  | cracked c                  | oncre      | te        |                       |                       |          |          |                     |                     |         |       |                   |
| Factor for racked co                      | oncrete  |                            | k          | Ccr,N     | [-]                   | 7.7                   |          |          |                     |                     |         |       |                   |
| Edge distance                             |          |                            | С          | cr,N      | [mm]                  | 1.5 · h <sub>ef</sub> |          |          |                     |                     |         |       |                   |
| Spacing                                   |          |                            | S          | Scr,N     | [mm]                  | 3.0 · hef             |          |          |                     |                     |         |       |                   |
| Splitting failure                         |          |                            |            |           |                       |                       |          |          |                     |                     |         |       |                   |
|                                           |          | Ccr,sp                     | for h      | nin       |                       |                       |          | 2.0      | · hef               |                     |         | 1.5   | · h <sub>ef</sub> |
|                                           |          | Co<br>h <sub>min</sub> < h | sp for     |           |                       |                       |          |          |                     |                     |         |       |                   |
| Edge distance                             |          | (Ccr,sp f                  |            |           | [mm]                  |                       |          |          | 2 x h <sub>ef</sub> |                     |         |       |                   |
| Lago diotario                             |          |                            | olatio     |           | []                    |                       |          |          | h <sub>min</sub>    | C <sub>cr,sp</sub>  |         |       |                   |
|                                           |          | Ccr,sp fo                  |            |           |                       |                       |          |          |                     |                     |         |       |                   |
|                                           |          |                            | hef        | _         |                       |                       |          |          | Co                  | cr,N                |         |       |                   |
| Spacing                                   |          | 5                          | cr,sp      |           | [mm]                  |                       |          |          | 2.0 ·               | Ccr,sp              |         |       |                   |
| Installation safety                       | factor   | for combi                  | ned p      | ull-out   | , concrete co         | ne and                | splittir | ng failu | re                  |                     |         |       |                   |
| Installation safety                       |          |                            |            |           |                       |                       | <u>-</u> |          | 1                   | .0                  |         |       |                   |
| factors for use category I1 <sup>1)</sup> | spe      | special cleaning           |            |           |                       | 1.2                   |          |          | 1.                  | 0                   |         |       | 1.2               |
| Installation safety                       | stan     | dard clean                 | ing        | γinst     | [-]                   |                       |          |          | 1                   | .2                  |         |       |                   |
| factors for use category I21)             | spe      | cial cleani                | ng         |           |                       | 1.2                   |          |          | 1.                  | 0                   |         |       | 1.2               |
| 1) In the absence of                      | other na | ational reg                | ulation    | 1.        | •                     |                       |          |          |                     |                     |         |       |                   |

<sup>1)</sup> In the absence of other national regulation.

| R-KER-II, R-KER-II-S and R-KER-II-W                                                     |           |
|-----------------------------------------------------------------------------------------|-----------|
| Performance Characteristic resistance under tension loads for rebar in cracked concrete | Annex C 8 |

<sup>&</sup>lt;sup>2)</sup> h – concrete member thickness.

<sup>3)</sup> Stressed cross section of the steel.

<sup>&</sup>lt;sup>4)</sup> Acc. to EN 1992-1-1.

Table C7: Characteristic resistance under shear loads for threaded rod – steel failure without lever arm

| Size                                            |                   |           | M8 | M10 | M12 | M16  | M20 | M24 | M30 |
|-------------------------------------------------|-------------------|-----------|----|-----|-----|------|-----|-----|-----|
| Steel failure with threaded rod grade 5.8       |                   |           |    |     |     |      |     |     |     |
| Characteristic resistance                       | V <sub>Rk,s</sub> | [kN]      | 9  | 14  | 21  | 39   | 61  | 88  | 140 |
| Factor considering ductility                    | <b>k</b> 7        | [-]       |    |     |     | 0.8  |     |     |     |
| Partial safety factor 1)                        | γMs               | [-]       |    |     |     | 1.25 |     |     |     |
| Steel failure with threaded rod grade 8.8       |                   |           |    |     |     |      |     |     |     |
| Characteristic resistance                       | V <sub>Rk,s</sub> | [kN]      | 15 | 23  | 34  | 63   | 98  | 141 | 224 |
| Factor considering ductility                    | <b>k</b> 7        | [-]       |    |     |     | 0.8  |     |     |     |
| Partial safety factor 1)                        | γMs               | [-]       |    |     |     | 1.25 |     |     |     |
| Steel failure with threaded rod grade 10.9      |                   |           |    |     |     |      |     |     |     |
| Characteristic resistance                       | V <sub>Rk,s</sub> | [kN]      | 18 | 29  | 42  | 78   | 122 | 176 | 280 |
| Factor considering ductility                    | <b>k</b> 7        | [-]       |    |     |     | 0.8  |     |     |     |
| Partial safety factor 1)                        | γMs               | [-]       |    |     |     | 1.50 |     |     |     |
| Steel failure with threaded rod grade 12.9      |                   |           |    |     |     |      |     |     |     |
| Characteristic resistance                       | V <sub>Rk,s</sub> | [kN]      | 22 | 35  | 51  | 94   | 147 | 212 | 336 |
| Factor considering ductility                    | <b>k</b> 7        | [-]       |    |     |     | 0.8  |     |     |     |
| Partial safety factor 1)                        | γMs               | [-]       |    |     |     | 1.50 |     |     |     |
| Steel failure with stainless steel threaded     | rod A4-70         |           |    |     |     |      |     |     |     |
| Characteristic resistance                       | V <sub>Rk,s</sub> | [kN]      | 13 | 20  | 29  | 55   | 86  | 124 | 196 |
| Factor considering ductility                    | <b>k</b> 7        | [-]       |    |     |     | 0.8  |     |     |     |
| Partial safety factor 1)                        | γMs               | [-]       |    |     |     | 1.56 |     |     |     |
| Steel failure with stainless steel threaded     | rod A4-80         |           |    |     |     |      |     |     |     |
| Characteristic resistance                       | V <sub>Rk,s</sub> | [kN]      | 15 | 23  | 34  | 63   | 98  | 141 | 224 |
| Factor considering ductility                    | <b>k</b> 7        | [-]       |    |     |     | 0.8  |     |     |     |
| Partial safety factor 1)                        | γMs               | [-]       |    |     |     | 1.33 |     |     |     |
| Steel failure with high corrosion stainless     | steel grade 70    |           |    |     |     |      |     |     |     |
| Characteristic resistance                       | V <sub>Rk,s</sub> | [kN]      | 13 | 20  | 29  | 55   | 86  | 124 | 196 |
| Factor considering ductility                    | <b>k</b> 7        | [-]       |    |     |     | 0.8  |     |     |     |
| Partial safety factor 1)                        | γMs               | [-]       |    |     |     | 1.56 |     |     |     |
| Steel failure with ultra-high strength stee     | threaded rod      | grade 14. | 8  |     |     |      |     |     |     |
| Characteristic resistance                       | V <sub>Rk,s</sub> | [kN]      | 25 | 40  | 59  | 109  | 171 | 247 | 392 |
| Factor considering ductility                    | <b>k</b> 7        |           |    |     |     | 8.0  |     |     |     |
| Partial safety factor 1)                        | γMs               | [-]       |    |     |     | 1.50 |     |     |     |
| Steel failure with ultra-high strength stee     | threaded rod      | grade 15. | .8 |     |     |      |     |     |     |
| Characteristic resistance                       | V <sub>Rk,s</sub> | [kN]      | 27 | 43  | 63  | 117  | 183 | 264 | 420 |
| Factor considering ductility                    | <b>k</b> 7        | [-]       |    |     |     | 8.0  |     |     |     |
| Partial safety factor 1)                        | γMs               | [-]       |    |     |     | 1.50 |     |     |     |
| Steel failure with ultra-high strength stee     | threaded rod      | grade 16. | .8 |     |     |      |     |     |     |
| Characteristic resistance                       | V <sub>Rk,s</sub> | [kN]      | 29 | 46  | 67  | 125  | 196 | 282 | 448 |
| Factor considering ductility                    | <b>k</b> 7        | [-]       |    |     |     | 8.0  |     |     |     |
| Partial safety factor 1)                        | γMs               | [-]       |    |     |     | 1.50 |     |     | -   |
| 1) In the absence of other national regulation. |                   |           |    |     |     |      |     |     |     |

<sup>1)</sup> In the absence of other national regulation.

| R-KER-II, R-KER-II-S and R-KER-II-W                                                                        |           |
|------------------------------------------------------------------------------------------------------------|-----------|
| Performance Characteristic resistance under shear loads for threaded rod in cracked and uncracked concrete | Annex C 9 |

Table C8: Characteristic resistance under shear loads for threaded rod – steel failure with lever arm

| Size                                                  |                     |           | M8 | M10 | M12 | M16  | M20  | M24  | M30  |  |  |
|-------------------------------------------------------|---------------------|-----------|----|-----|-----|------|------|------|------|--|--|
| Steel failure with threaded rod grade 5.8             |                     |           |    |     |     |      |      |      |      |  |  |
| Characteristic resistance                             | M <sup>0</sup> Rk,s | [Nm]      | 19 | 37  | 65  | 166  | 324  | 561  | 1124 |  |  |
| Partial safety factor 1)                              | γMs                 | [-]       |    |     |     | 1.25 |      |      |      |  |  |
| Steel failure with threaded rod grade 8.8             |                     |           |    |     |     |      |      |      |      |  |  |
| Characteristic resistance                             | M <sup>0</sup> Rk,s | [Nm]      | 30 | 60  | 105 | 266  | 519  | 898  | 1799 |  |  |
| Partial safety factor 1)                              | γMs                 | [-]       |    |     |     | 1.25 |      |      |      |  |  |
| Steel failure with threaded rod grade 10.9            | )                   |           |    |     |     |      |      |      |      |  |  |
| Characteristic resistance                             | M <sup>0</sup> Rk,s | [Nm]      | 37 | 75  | 131 | 333  | 649  | 1123 | 2249 |  |  |
| Partial safety factor 1)                              | γMs                 | [-]       |    |     |     | 1.50 |      |      |      |  |  |
| Steel failure with threaded rod grade 12.9            |                     |           |    |     |     |      |      |      |      |  |  |
| Characteristic resistance                             | M <sup>0</sup> Rk,s | [Nm]      | 45 | 90  | 157 | 400  | 779  | 1347 | 2698 |  |  |
| Partial safety factor 1)                              | γMs                 | [-]       |    |     |     | 1.50 |      |      |      |  |  |
| Steel failure with stainless steel threaded rod A4-70 |                     |           |    |     |     |      |      |      |      |  |  |
| Characteristic resistance                             | M <sup>0</sup> Rk,s | [Nm]      | 26 | 52  | 92  | 233  | 454  | 786  | 1574 |  |  |
| Partial safety factor 1)                              | γMs                 | [-]       |    |     |     | 1.56 |      |      |      |  |  |
| Steel failure with stainless steel threaded           | rod A4-80           |           |    |     |     |      |      |      |      |  |  |
| Characteristic resistance                             | $M^0$ Rk,s          | [Nm]      | 30 | 60  | 105 | 266  | 519  | 898  | 1799 |  |  |
| Partial safety factor 1)                              | γMs                 | [-]       |    |     |     | 1.33 |      |      |      |  |  |
| Steel failure with high corrosion resistant           | t steel grade 70    |           |    |     |     |      |      |      |      |  |  |
| Characteristic resistance                             | $M^0$ Rk,s          | [Nm]      | 26 | 52  | 92  | 233  | 454  | 786  | 1574 |  |  |
| Partial safety factor 1)                              | γMs                 | [-]       |    |     |     | 1.56 |      |      |      |  |  |
| Steel failure with ultra-high strength stee           | I threaded rod      | grade 14. | 8  |     |     |      |      |      |      |  |  |
| Characteristic resistance                             | M <sup>0</sup> Rk,s | [Nm]      | 52 | 104 | 183 | 466  | 908  | 1571 | 3148 |  |  |
| Partial safety factor 1)                              | γMs                 | [-]       |    |     |     | 1.50 |      |      |      |  |  |
| Steel failure with ultra-high strength stee           | I threaded rod      | grade 15. | 8  |     |     |      |      |      |      |  |  |
| Characteristic resistance                             | M <sup>0</sup> Rk,s | [Nm]      | 56 | 112 | 196 | 499  | 973  | 1683 | 3373 |  |  |
| Partial safety factor 1)                              | γMs                 | [-]       |    |     |     | 1.50 |      |      |      |  |  |
| Steel failure with ultra-high strength stee           | I threaded rod      | grade 16. | 8  |     |     |      |      |      |      |  |  |
| Characteristic resistance                             | $M^0$ Rk,s          | [Nm]      | 59 | 119 | 209 | 532  | 1038 | 1796 | 3598 |  |  |
| Partial safety factor 1)                              | γMs                 | [-]       |    |     |     | 1.50 |      |      |      |  |  |
| ) In the absence of other national regulation.        | •                   |           |    |     |     |      |      |      |      |  |  |

<sup>&</sup>lt;sup>1)</sup> In the absence of other national regulation.

Table C9: Characteristic resistance under shear loads - pry out and concrete edge failure for threaded rod

| Size                                           |            |      | M8                                 | M10 | M12 | M16 | M20                                             | M24 | M30 |
|------------------------------------------------|------------|------|------------------------------------|-----|-----|-----|-------------------------------------------------|-----|-----|
| Pry out failure                                |            |      |                                    |     |     |     |                                                 |     |     |
| Pry out factor                                 | <b>k</b> 8 | [-]  | 2                                  |     |     |     |                                                 |     |     |
| Concrete edge failure                          |            |      |                                    |     |     |     |                                                 |     |     |
| Outside diameter of anchor                     | $d_{nom}$  | [mm] | 8                                  | 10  | 12  | 16  | 20                                              | 24  | 30  |
| Effective length of anchor under shear loading | lf         | [mm] | lf = hef and ≤ 12 d <sub>nom</sub> |     |     |     | If = hef<br>and<br>≤ max<br>(8·dnom;<br>300 mm) |     |     |

| R-KER-II, R-KER-II-S and R-KER-II-W                                                                        |            |
|------------------------------------------------------------------------------------------------------------|------------|
| Performance Characteristic resistance under shear loads for threaded rod in cracked and uncracked concrete | Annex C 10 |

Table C10: Characteristic resistance under shear loads for rod with inner thread – steel failure without lever arm

|                    |                                                                                                                                                                                                                                                                                                                                    | M6<br>/Ø10                                            | M8/<br>Ø12                                             | M10/<br>Ø16                                            | M12/<br>Ø16                                            | M16/<br>Ø24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e 5.8              |                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                        |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $V_{Rk,s}$         | [kN]                                                                                                                                                                                                                                                                                                                               | 5.0                                                   | 9.2                                                    | 14.5                                                   | 21.1                                                   | 39.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| k <sub>7</sub>     | [-]                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        | 0.8                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γMs                | [-]                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        | 1.25                                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| e 8.8              |                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                        |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $V_{Rk,s}$         | [kN]                                                                                                                                                                                                                                                                                                                               | 8.0                                                   | 14.6                                                   | 23.2                                                   | 33.7                                                   | 62.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| k <sub>7</sub>     | [-]                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        | 0.8                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γMs                | [-]                                                                                                                                                                                                                                                                                                                                | 1.25                                                  |                                                        |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| inner thread A4-70 |                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                        |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $V_{Rk,s}$         | [kN]                                                                                                                                                                                                                                                                                                                               | 7.0                                                   | 12.8                                                   | 20.3                                                   | 29.5                                                   | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| k <sub>7</sub>     | [-]                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        | 0.8                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γ̃Ms               | [-]                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        | 1.56                                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| inner thread A4-80 |                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                        |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $V_{Rk,s}$         | [kN]                                                                                                                                                                                                                                                                                                                               | 8.0                                                   | 14.6                                                   | 23.2                                                   | 33.7                                                   | 62.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| k <sub>7</sub>     | [-]                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        | 0.8                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γMs                | [-]                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        | 1.33                                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| teel grade 70      |                                                                                                                                                                                                                                                                                                                                    |                                                       |                                                        |                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $V_{Rk,s}$         | [kN]                                                                                                                                                                                                                                                                                                                               | 7.0                                                   | 12.8                                                   | 20.3                                                   | 29.5                                                   | 55.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| k <sub>7</sub>     | [-]                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        | 0.8                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γMs                | [-]                                                                                                                                                                                                                                                                                                                                |                                                       |                                                        | 1.56                                                   |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | K <sub>7</sub>   Y <sub>Ms</sub>     e 8.8   V <sub>Rk,s</sub>     k <sub>7</sub>   Y <sub>Ms</sub>     inner thread A4-70     V <sub>Rk,s</sub>     k <sub>7</sub>   Y <sub>Ms</sub>     inner thread A4-80     V <sub>Rk,s</sub>     k <sub>7</sub>   Y <sub>Ms</sub>     teel grade 70     V <sub>Rk,s</sub>     k <sub>7</sub> | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Mode   Mode |

<sup>1)</sup> In the absence of other national regulation.

Table C11: Characteristic resistance under shear loads for rod with inner thread - steel failure with lever arm

| Size                                               |                  |      | M6<br>/Ø10 | M8/<br>Ø12 | M10/<br>Ø16 | M12/<br>Ø16 | M16/<br>Ø24 |  |  |  |  |
|----------------------------------------------------|------------------|------|------------|------------|-------------|-------------|-------------|--|--|--|--|
| Steel failure with rod with inner thread grade 5   | 5.8              |      |            |            |             |             |             |  |  |  |  |
| Characteristic resistance                          | $M^0_{Rk,s}$     | [Nm] | 7.6        | 18,7       | 37,4        | 65,5        | 166,5       |  |  |  |  |
| Partial safety factor 1)                           | γMs              | [-]  |            |            | 1.25        |             |             |  |  |  |  |
| Steel failure with rod with inner thread grade 8.8 |                  |      |            |            |             |             |             |  |  |  |  |
| Characteristic resistance                          | $M^0_{Rk.s}$     | [Nm] | 12.2       | 30.0       | 59.8        | 104.8       | 266.4       |  |  |  |  |
| Partial safety factor 1)                           | γMs              | [-]  |            |            | 1.25        |             |             |  |  |  |  |
| Steel failure with stainless steel for rod with ir | ner thread A4-70 |      |            |            |             |             |             |  |  |  |  |
| Characteristic resistance                          | $M^0_{Rk,s}$     | [Nm] | 10.7       | 26.2       | 52.3        | 91.7        | 233.1       |  |  |  |  |
| Partial safety factor 1)                           | γMs              | [-]  |            |            | 1.56        |             |             |  |  |  |  |
| Steel failure with stainless steel for rod with in | ner thread A4-80 |      |            |            |             |             |             |  |  |  |  |
| Characteristic resistance                          | $M^0_{Rk,s}$     | [Nm] | 12.2       | 30.0       | 59.8        | 104.8       | 266.4       |  |  |  |  |
| Partial safety factor 1)                           | γMs              | [-]  |            |            | 1.33        |             |             |  |  |  |  |
| Steel failure with high corrosion resistant stee   | l grade 70       |      |            |            |             |             |             |  |  |  |  |
| Characteristic resistance                          | $M^0_{Rk,s}$     | [Nm] | 10.7       | 26.2       | 52.3        | 91.7        | 233.1       |  |  |  |  |
| Partial safety factor 1)                           | γMs              | [-]  | ·          |            | 1.56        |             |             |  |  |  |  |

<sup>1)</sup> In the absence of other national regulation.

# Table C12: Characteristic resistance under shear loads – pry out and concrete edge failure for rod with inner thread

| Size                                           |                      |                    | M6<br>/Ø10               | M8/<br>Ø12       | M10/<br>Ø16 | M12/<br>Ø16 | M16/<br>Ø24 |  |
|------------------------------------------------|----------------------|--------------------|--------------------------|------------------|-------------|-------------|-------------|--|
| Pry out failure                                |                      |                    |                          |                  |             |             |             |  |
| Factor                                         | k <sub>8</sub> [-] 2 |                    |                          |                  |             |             |             |  |
| Concrete edge failure                          |                      |                    |                          |                  |             |             |             |  |
| Outside diameter of anchor                     | d <sub>nom</sub>     | n [mm] 10 12 16 16 |                          |                  |             |             |             |  |
| Effective length of anchor under shear loading |                      | I <sub>f</sub> =   | h <sub>ef</sub> and ≤ 12 | d <sub>nom</sub> |             |             |             |  |

# R-KER-II, R-KER-II-S and R-KER-II-W

# **Performance**

Characteristic resistance under shear loads for threaded rod in cracked and uncracked concrete

# Table C13: Characteristic resistance under shear loads for rebar – steel failure without lever arm

| Size                         |                |      | Ø8                                                                 | Ø10 | Ø12 | Ø14 | Ø16 | Ø20 | Ø25 | Ø32 |  |
|------------------------------|----------------|------|--------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|--|
| Steel failure with rebar     |                |      |                                                                    |     |     |     |     |     |     |     |  |
| Characteristic resistance    | $V_{Rk,s}$     | [kN] | 0.5 · A <sub>s</sub> <sup>2)</sup> · f <sub>uk</sub> <sup>3)</sup> |     |     |     |     |     |     |     |  |
| Factor considering ductility | k <sub>7</sub> | [-]  |                                                                    |     |     | 0   | .8  |     |     |     |  |
| Partial safety factor 1)     | γ̃Ms           | [-]  |                                                                    |     |     | 1   | .5  |     |     |     |  |

 $<sup>^{\</sup>rm 1)} \ln$  the absence of other national regulation.

#### Table C14: Characteristic resistance under shear loads for rebar – steel failure with lever arm

| Size                      |            |      | Ø8 | Ø10 | Ø12 | Ø14     | Ø16                           | Ø20 | Ø25 | Ø32 |
|---------------------------|------------|------|----|-----|-----|---------|-------------------------------|-----|-----|-----|
| Steel failure with rebar  |            |      |    |     |     |         |                               |     |     |     |
| Characteristic resistance | $M^0$ Rk,s | [Nm] |    |     | 1   | ,2 · We | 1 <sup>2)</sup> • <b>f</b> uk | 3)  |     |     |
| Partial safety factor 1)  | γMs        | [-]  |    |     |     | 1       | .5                            |     |     |     |

<sup>1)</sup> In the absence of other national regulation.

# Table C15: Characteristic resistance under shear loads – pry out and concrete edge failure for rebar

| Size                                           |            |      | Ø8 | Ø10 | Ø12      | Ø14     | Ø16                | Ø20 | Ø25 | Ø32                                             |
|------------------------------------------------|------------|------|----|-----|----------|---------|--------------------|-----|-----|-------------------------------------------------|
| Pry out failure                                |            |      |    |     |          |         |                    |     |     |                                                 |
| Factor                                         | <b>k</b> 8 | [-]  |    |     |          |         | 2                  |     |     |                                                 |
| Concrete edge failure                          |            |      |    |     |          |         |                    |     |     |                                                 |
| Outside diameter of anchor                     | dnom       | [mm] | 8  | 10  | 12       | 14      | 16                 | 20  | 25  | 32                                              |
| Effective length of anchor under shear loading | lf         | [mm] |    |     | If = hef | and ≤ 1 | 2 d <sub>nom</sub> |     |     | If = hef<br>and<br>≤ max<br>(8·dnom;<br>300 mm) |

# R-KER-II, R-KER-II-S and R-KER-II-W Performance Characteristic resistance under shear loads in cracked and uncracked concrete Annex C 12

<sup>&</sup>lt;sup>2)</sup> Stressed cross section of the steel element.

<sup>&</sup>lt;sup>3)</sup> Acc. to EN 1992-1-1.

<sup>&</sup>lt;sup>2)</sup> Elastic section modulus calculated from the stressed cross section of steel element.

<sup>3)</sup> Acc. to EN 1992-1-1.

# Table C16: Displacement under tension loads – threaded rod

| Size                                                                                                                                                      |                     |           | M8      | M10      | M12      | M16 | M20 | M24 | M30 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|---------|----------|----------|-----|-----|-----|-----|--|
| Characteristic displacement in uncrack                                                                                                                    | ed concrete C20     | 0/25 to C | 50/60 u | nder tei | nsion lo | ads |     |     |     |  |
| Displacement 1)                                                                                                                                           | δηο                 | [mm]      | 0.3     | 0.4      | 0.4      | 0.5 | 0.5 | 0.6 | 0.7 |  |
| Displacement 1)                                                                                                                                           | [mm]                | 0.6       | 0.6     | 0.6      | 0.6      | 0.6 | 0.6 | 0.6 |     |  |
| Characteristic displacement in cracked                                                                                                                    | concrete C20/2      | 5 to C50/ | 60 und  | er tensi | on load  | s   |     |     |     |  |
| Displacement 1)                                                                                                                                           | δηο                 | [mm]      | 0.3     | 0.4      | 0.4      | 0.5 | 0.5 | 0.6 | 0.6 |  |
| Displacement 17                                                                                                                                           | $\delta N_{\infty}$ | [mm]      | 2       | 2        | 2        | 2   | 2   | 2   | 2   |  |
| 1) These values are suitable for each temperature range and categories specified in Annex B1.                                                             |                     |           |         |          |          |     |     |     |     |  |
| Calculation of the displacement: $\delta_{N0} = \delta_{N0-factor} \cdot N$ ; $\delta_{N} = \delta_{N\infty-factor} \cdot N$ ; (N – applied tension load) |                     |           |         |          |          |     |     |     |     |  |

Table C17: Displacement under shear loads – threaded rod

| Size                                                                                                                                                            |                     |          | M8     | M10    | M12      | M16      | M20      | M24 | M30 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|--------|--------|----------|----------|----------|-----|-----|
| Characteristic displacement in cracked                                                                                                                          | and uncracked       | concrete | C20/25 | to C50 | 0/60 und | der shea | ar loads | ;   |     |
| Displacement 1)                                                                                                                                                 | δνο                 | [mm]     | 2.5    | 2.5    | 2.5      | 2.5      | 2.5      | 2.5 | 2.5 |
| Displacement 1)                                                                                                                                                 | $\delta v_{\infty}$ | [mm]     | 3.7    | 3.7    | 3.7      | 3.7      | 3.7      | 3.7 | 3.7 |
| 1) These values are suitable for each temperature range and categories specified in Annex B1.                                                                   |                     |          |        |        |          |          |          |     |     |
| Calculation of the displacement: $\delta v_0 = \delta v_0$ -factor $\cdot$ V; $\delta v = \delta v_\infty$ -factor $\cdot$ V; $(V - \text{applied shear load})$ |                     |          |        |        |          |          |          |     |     |

# R-KER-II, R-KER-II-S and R-KER-II-W

# **Performance**

Displacement under service loads: tension and shear loads - threaded rod

Table C18: Displacement under tension loads – rod with inner thread

| Size                            |                     |             | M6/ Ø10       | M8/ Ø12      | M10/Ø 16     | M12/Ø 16 | M16/Ø 24 |
|---------------------------------|---------------------|-------------|---------------|--------------|--------------|----------|----------|
| Characteristic displacement     | in uncracked        | concrete    | C20/25 to C5  | 0/60 under t | ension loads |          |          |
| Dianlacement 1)                 | δηο                 | [mm]        | 0.2           | 0.3          | 0.3          | 0.4      | 0.4      |
| Displacement 1)                 | $\delta N_{\infty}$ | [mm]        | 0.6           | 0.6          | 0.6          | 0.6      | 0.6      |
| Characteristic displacement     | in cracked co       | ncrete C2   | 0/25 to C50/6 | 0 under tens | sion loads   |          |          |
| Disulation 4 1)                 | δηο                 | [mm]        | 0.3           | 0.4          | 0.4          | 0.5      | 0.3      |
| Displacement 1)                 | $\delta N_{\infty}$ | [mm]        | 2             | 2            | 2            | 2        | 2        |
| 1) These values are suitable fo | r each tempera      | ature range | and categor   | es specified | in Annex B1. |          |          |

<sup>1)</sup> These values are suitable for each temperature range and categories specified in Annex B1.

Calculation of the displacement: δN0 = δN0-factor · N; δN = δ N∞-factor · N; (N – applied tension load)

# Table C19: Displacement under shear loads - rod with inner thread

| Size                            |                                           |               | M6/ Ø10                                 | M8/ Ø12         | M10/Ø16      | M12/ Ø16    | M16/ Ø24 |
|---------------------------------|-------------------------------------------|---------------|-----------------------------------------|-----------------|--------------|-------------|----------|
| Characteristic displacement     | in cracked ar                             | nd uncrack    | ed concrete                             | C20/25 to C     | 50/60 under  | shear loads |          |
| Dianlessment 1)                 | δνο                                       | [mm]          | 2.5                                     | 2.5             | 2.5          | 2.5         | 2.5      |
| Displacement 1)                 | $\delta v_{\infty}$                       | [mm]          | 3.7                                     | 3.7             | 3.7          | 3.7         | 3.7      |
| 1) These values are suitable fo | each temper                               | ature range   | and categor                             | ies specified   | in Annex B1. |             | •        |
| Calculation of the displacement | ent: $\delta v_0 = \delta v_0 - \epsilon$ | actor · V; δν | = $\delta V_{\infty}$ -factor $\cdot V$ | /; (V – applied | shear load)  |             |          |

# R-KER-II, R-KER-II-S and R-KER-II-W

# **Performance**

Displacement under service loads: tension and shear loads - rod with inner thread

# Table C20: Displacement under tension loads – rebar

| Size                                                                     |            |           | Ø8      | Ø10     | Ø12       | Ø14      | Ø16 | Ø20 | Ø25 | Ø32 |
|--------------------------------------------------------------------------|------------|-----------|---------|---------|-----------|----------|-----|-----|-----|-----|
| Characteristic displacement in uncrac                                    | ked concre | ete C20/2 | 25 to C | 50/60 u | nder tei  | nsion lo | ads |     |     |     |
| Displacement 1) δN0 [m                                                   |            |           | 0.3     | 0.3     | 0.4       | 0.4      | 0.5 | 0.6 | 0.6 | 8.0 |
| Displacement $\delta_{N_{\infty}}$ [mm]                                  |            | [mm]      | 0.6     | 0.6     | 0.6       | 0.6      | 0.6 | 0.6 | 0.6 | 0.6 |
| Characteristic displacement in cracked                                   | d concrete | C20/25    | to C50/ | 60 und  | er tensi  | on load  | ls  |     |     |     |
| Displacement 1)                                                          | δνο        | [mm]      | 0.3     | 0.3     | 0.3       | 0.4      | 0.5 | 0.6 | 0.6 | 0.7 |
| Displacement 1) $ \delta N_{\infty}                                    $ |            | [mm]      | 2       | 2       | 2         | 2        | 2   | 2   | 2   | 2   |
| ) These values are suitable for each temperature range a                 |            |           | categoi | ies spe | cified in | Annex    | B1. |     |     |     |

Calculation of the displacement:  $\delta N0 = \delta N0$ -factor · N;  $\delta N = \delta N_{\infty}$ -factor · N; (N - applied tension load)

# Table C21: Displacement under shear loads - rebar

| Size                                      |                                                    |              | Ø8        | Ø10       | Ø12      | Ø14     | Ø16     | Ø20     | Ø25 | Ø32 |
|-------------------------------------------|----------------------------------------------------|--------------|-----------|-----------|----------|---------|---------|---------|-----|-----|
| Characteristic displacement in cracked    | naracteristic displacement in cracked and uncracke |              |           | C20/25    | to C50   | 0/60 un | der she | ar load | s   |     |
| Displacement 1)                           | δνο                                                | [mm]         | 2.5       | 2.5       | 2.5      | 2.5     | 2.5     | 2.5     | 2.5 | 2.5 |
| Displacement 1)                           | $\delta v_{\infty}$                                | [mm]         | 3.7       | 3.7       | 3.7      | 3.7     | 3.7     | 3.7     | 3.7 | 3.7 |
| 1) These values are suitable for each tem | nge and                                            | categor      | ies spe   | cified in | Annex    | B1.     |         |         |     |     |
| Calculation of the displacement: δνο = δ  | $\delta v = \delta v_{\infty}$                     | ₀-factor · \ | /; (V – a | applied : | shear lo | ad)     |         |         |     |     |

# R-KER-II, R-KER-II-S and R-KER-II-W

# **Performance**

Displacement under service loads: tension and shear loads - rebar

Table C22: Characteristic resistance under tension load for threaded rod for seismic performance category C1

| Size                                     |                  | M8                    | M10    | M12      | M16     | M20       | M24       | M30   |     |  |
|------------------------------------------|------------------|-----------------------|--------|----------|---------|-----------|-----------|-------|-----|--|
| Steel failure                            |                  |                       |        |          |         |           |           |       |     |  |
| Steel failure with threaded rod grade    | 5.8              |                       |        |          |         |           |           |       |     |  |
| Characteristic resistance                | NRk,s,seis       | [kN]                  | 18     | 29       | 42      | 78        | 122       | 176   | 280 |  |
| Partial safety factor 1)                 | γMs, seis        | [-]                   |        |          |         | 1.50      |           |       |     |  |
| Steel failure with threaded rod grade    | 8.8              |                       |        |          |         |           |           |       |     |  |
| Characteristic resistance                | NRk,s,seis       | [kN]                  | 29     | 46       | 67      | 125       | 196       | 282   | 448 |  |
| Partial safety factor 1)                 | γMs, seis        | [-]                   |        |          |         | 1.50      |           |       |     |  |
| Steel failure with stainless steel threa | ded rod A4-70    |                       |        |          |         |           |           |       |     |  |
| Characteristic resistance                | NRk,s, seis      | [kN]                  | 25     | 40       | 59      | 109       | 171       | 247   | 392 |  |
| Partial safety factor 1)                 | γMs, seis        | [-]                   |        |          |         | 1.87      |           |       |     |  |
| Steel failure with stainless steel threa | ded rod A4-80    |                       |        | T        |         |           |           | 1     |     |  |
| Characteristic resistance                | NRk,s, seis      | [kN]                  | 29     | 46       | 67      | 125       | 196       | 282   | 448 |  |
| Partial safety factor 1)                 | γMs, seis        | [-]                   |        |          |         | 1.60      |           |       |     |  |
| Steel failure with high corrosion resist | ant steel grade  | 70                    |        |          |         |           |           |       |     |  |
| Characteristic resistance                | NRk,s, seis      | [kN]                  | 25     | 40       | 59      | 109       | 171       | 247   | 392 |  |
| Partial safety factor 1)                 | γMs, seis        | [-]                   |        |          |         | 1.87      |           |       |     |  |
| Combined pull-out and concrete co        | one failure in u | ncracked co           | ncrete | C20/25 f | or a wo | rking lif | e of 50 y | ears/ |     |  |
| Characteristic bond resistance           |                  |                       |        |          |         |           |           |       |     |  |
| Temperature range I: 24°C / 40°C         | TRk,ucr,seis,50  | [N.mm <sup>-2</sup> ] | 8.0    | 10.0     | 10.0    | 9.5       | 7.5       | 7.0   | 4.0 |  |
| Temperature range II: 50°C / 80°C        | τRk,ucr,seis,50  | [N.mm <sup>-2</sup> ] | 8.0    | 10.0     | 10.0    | 9.5       | 7.5       | 7.0   | 4.0 |  |
| Temperature range II: 80°C / 120°C       | τRk,ucr,seis,50  | [N.mm <sup>-2</sup> ] | 4.5    | 5.0      | 6.0     | 5.0       | 4.0       | 4.0   | 2.0 |  |
| Combined pull-out and concrete co        | one failure in u | ncracked co           | ncrete | C20/25 f | or a wo | rking lif | e of 100  | years |     |  |
| Characteristic bond resistance           |                  |                       |        |          |         |           |           |       |     |  |
| Temperature range I: 24°C / 40°C         | τRk,ucr,seis,100 | [N.mm <sup>-2</sup> ] | 8.0    | 9.0      | 10.0    | 9.5       | 7.5       | 7.0   | 4.0 |  |
| Temperature range II: 50°C / 80°C        | TRk,ucr,seis,100 | [N.mm <sup>-2</sup> ] | 8.0    | 9.0      | 10.0    | 9.5       | 7.5       | 7.0   | 4.0 |  |

# Table C23: Characteristic resistance under tension load for rebar for seismic performance category C1

| Size                               |                        |                       | Ø8      | Ø10     | Ø12      | Ø14              | Ø16               | Ø20     | Ø25  | Ø32 |
|------------------------------------|------------------------|-----------------------|---------|---------|----------|------------------|-------------------|---------|------|-----|
| Steel failure with rebar           |                        |                       |         | ,       |          |                  |                   |         |      |     |
| Characteristic resistance          | NRk,s,seis             | [kN]                  |         |         |          | As <sup>2)</sup> | fuk <sup>3)</sup> |         |      |     |
| Partial safety factor 1)           | γMs, seis              | [-]                   |         |         |          | 1.               | 40                |         |      |     |
| Combined pull-out and concrete co  | one failure in u       | ncracked o            | concret | e C20/2 | 25 for a | workin           | g life o          | f 50 ye | ars  |     |
| Characteristic bond resistance     | ristic bond resistance |                       |         |         |          |                  |                   |         |      |     |
| Temperature range I: 24°C / 40°C   | τRk,ucr,seis,50        | [N.mm <sup>-2</sup> ] | 7.0     | 8.5     | 10.0     | 10.0             | 8.5               | 7.5     | 6.0  | 3.5 |
| Temperature range II: 50°C / 80°C  | TRk,ucr,seis,50        | [N.mm <sup>-2</sup> ] | 7.0     | 8.5     | 10.0     | 10.0             | 8.5               | 7.5     | 6.0  | 3.5 |
| Temperature range II: 80°C / 120°C | TRk,ucr,seis,50        | [N.mm <sup>-2</sup> ] | 4.0     | 4.5     | 5.0      | 5.0              | 4.5               | 4.0     | 3.0  | 1.5 |
| Combined pull-out and concrete co  | one failure in u       | ncracked o            | concret | e C20/2 | 25 for a | workin           | g life o          | f 100 y | ears |     |
| Characteristic bond resistance     |                        |                       |         |         |          |                  |                   |         |      |     |
| Temperature range I: 24°C / 40°C   | TRk,ucr,seis,100       | [N.mm <sup>-2</sup> ] | 6.0     | 8.5     | 10.0     | 10.0             | 8.5               | 7.5     | 6.0  | 3.5 |
| Temperature range II: 50°C / 80°C  | τRk,ucr,seis,100       | [N.mm <sup>-2</sup> ] | 6.0     | 8.5     | 10.0     | 10.0             | 8.5               | 7.5     | 6.0  | 3.5 |

# R-KER-II, R-KER-II-S and R-KER-II-W Annex C 16 **Performance** Characteristic resistance under tension loads for threaded and rebar for seismic action category C1

In the absence of other national regulation.
 Stressed cross section of the steel element.

<sup>&</sup>lt;sup>3)</sup> Acc. to EN 1992-1-1.

Table C24: Characteristic resistance under shear loads for threaded rod for seismic performance category C1 - steel failure without lever arm

| Size                                        |                         |      | M8   | M10  | M12  | M16  | M20  | M24  | M30   |
|---------------------------------------------|-------------------------|------|------|------|------|------|------|------|-------|
| Steel failure with threaded rod grade 5.8   |                         |      |      |      |      |      |      |      |       |
| Characteristic resistance                   | $V_{Rk,s,seis}$         | [kN] | 6.3  | 10.1 | 14.7 | 27.3 | 42.7 | 61.6 | 98.0  |
| Partial safety factor 1)                    | γMs, seis               | [-]  |      |      |      | 1.25 |      |      |       |
| Steel failure with threaded rod grade 8.8   |                         |      |      |      |      |      |      |      |       |
| Characteristic resistance                   | V <sub>Rk,s, seis</sub> | [kN] | 10.2 | 16.1 | 23.5 | 44.1 | 68.6 | 98.7 | 156.8 |
| Partial safety factor 1)                    | γMs, seis               | [-]  |      |      |      | 1.25 |      |      |       |
| Steel failure with stainless steel threaded | rod A4-70               |      |      |      |      |      |      |      |       |
| Characteristic resistance                   | V <sub>Rk,seis</sub>    | [kN] | 9.1  | 14.4 | 20.7 | 38.5 | 59.9 | 86.5 | 137.4 |
| Partial safety factor 1)                    | γMs, seis               | [-]  |      |      |      | 1.56 |      |      |       |
| Steel failure with stainless steel threaded | rod A4-80               |      |      |      |      |      |      |      |       |
| Characteristic resistance                   | V <sub>Rk,seis</sub>    | [kN] | 10.2 | 16.1 | 23.5 | 44.1 | 68.6 | 98.7 | 157.2 |
| Partial safety factor 1)                    | γMs, seis               | [-]  |      |      |      | 1.33 |      |      |       |
| Steel failure with high corrosion stainless | steel grade 70          |      |      |      |      |      |      |      |       |
| Characteristic resistance                   | V <sub>Rk,seis</sub>    | [kN] | 9.1  | 14.4 | 20.7 | 38.5 | 59.9 | 86.5 | 137.4 |
| Partial safety factor 1)                    | γMs, seis               | [-]  |      | •    |      | 1.56 | •    | •    | •     |

<sup>1)</sup> In the absence of other national regulation.

# Table C25: Characteristic resistance under shear loads for rebar for seismic performance category C1 – steel failure without lever arm

| Size                      |            |      | Ø8 | Ø10 | Ø12                             | Ø14 | Ø16 | Ø20 | Ø25 | Ø32 |  |
|---------------------------|------------|------|----|-----|---------------------------------|-----|-----|-----|-----|-----|--|
| Steel failure with rebar  |            |      |    |     |                                 |     |     |     |     |     |  |
| Characteristic resistance | VRk,s,seis | [kN] |    |     | $0.35\cdotAs^{2)}\cdotfuk^{3)}$ |     |     |     |     |     |  |
| Partial safety factor 1)  | γMs, seis  | [-]  |    |     |                                 | 1.  | .5  |     |     |     |  |

<sup>1)</sup> In the absence of other national regulation.

| R-KER-II, R-KER-II-S and R-KER-II-W                                                                           |            |
|---------------------------------------------------------------------------------------------------------------|------------|
| Performance Characteristic resistance under shear loads for threaded and rebar for seismic action category C1 | Annex C 17 |

<sup>2)</sup> Stressed cross section of the steel element.

<sup>&</sup>lt;sup>3)</sup> Acc. to EN 1992-1-1.

# Table C26: Displacement under tension loads - threaded rod for seismic performance category C1

| Size         |         |      |     | M10 | M12 | M16 | M20 | M24 | M30 |
|--------------|---------|------|-----|-----|-----|-----|-----|-----|-----|
| Displacement | δN,seis | [mm] | 3.0 | 3.1 | 3.5 | 4.0 | 5.0 | 6.0 | 6.6 |

# Table C27: Displacement under shear loads - threaded rod for seismic performance category C1

| Size         |                 |      |     | M10 | M12 | M16 | M20 | M24 | M30 |
|--------------|-----------------|------|-----|-----|-----|-----|-----|-----|-----|
| Displacement | $\delta$ V.seis | [mm] | 3.5 | 4.0 | 4.6 | 5.0 | 5.8 | 6.5 | 7.0 |

# Table C28: Displacement under tension loads - rebar for seismic performance category C1

| Size         |                 |      | Ø8  | Ø10 | Ø12 | Ø14 | Ø16 | Ø20 | Ø25 | Ø32 |
|--------------|-----------------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| Displacement | $\delta$ N.seis | [mm] | 3.0 | 3.1 | 3.5 | 4.0 | 4.0 | 5.0 | 6.0 | 6.4 |

# Table C29: Displacement under shear loads - rebar for seismic performance category C1

| Size         |         |      | Ø8  | Ø10 | Ø12 | Ø14 | Ø16 | Ø20 | Ø25 | Ø32 |
|--------------|---------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| Displacement | δv.seis | [mm] | 3.5 | 4.0 | 4.6 | 5.0 | 5.0 | 5.8 | 6.5 | 7.2 |

R-KER-II, R-KER-II-S and R-KER-II-W

Performance

Displacement under service loads: tension and shear loads

for seismic action category C1



# British Board of Agrément, 1st Floor Building 3,

1st Floor Building 3 Hatters Lane, Croxley Park Watford WD18 8YG