

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6203-of 22/11/2022
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	Rawlplug R-HPTIIA4 Stainless Steel Throughbolts
Product family to which the construction product belongs:	Area Code: 33 Torque controlled expansion anchor for use in cracked and uncracked concrete
Manufacturer:	Rawlplug S.A. Ul. Kwidzyńska 6 51-416 Wrocław Poland
Manufacturing plant(s):	Manufacturing Plant No. 2
This UK Technical Assessment contains:	15 pages including 10 annexes which form an integral part of this assessment
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330232-00-0601 "Mechanical fasteners for use in concrete"

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1. Technical description of the product

The Rawlplug R-HPTIIA4 Stainless Steel Throughbolts are through-fixing torque-controlled expansion anchors in the following sizes: M8, M10, M12 and M16. Each type comprises a special bolt with a taper, an expansion sleeve, a hexagonal nut and a washer. The anchors are made from A4 grade stainless steel.

The anchor is installed in a drilled hole; tightening the nut draws the cone into the sleeve. The expansion of this sleeve applies the anchorage. The installed anchor is shown in Annex 1.

2. Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this UK Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1. Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance (static and quasi-static loading)	See Annex C 1 and C 2
Displacement	See Annex C 1 and C 2
Characteristic resistance for seismic performance category	See Annex C 4 and C 5
C1 and C2	

3.2. Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1 according to EN 13501-1
Resistance to fire	Seen Annex C 3

3.3. Health, hygiene and the environment (BWR 3)

Not relevant.

3.4. Safety and accessibility in use (BWR 4)

Not relevant.

3.5. Protection against noise (BWR 5)

Not relevant.

3.6. Energy economy and heat retention (BWR 6)

Not relevant.

3.7. Sustainable use of natural resources (BWR 7)

No performance assessed.

4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1. System of assessment and verification of constancy of performance

According to UKAD No. 330232-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011 as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

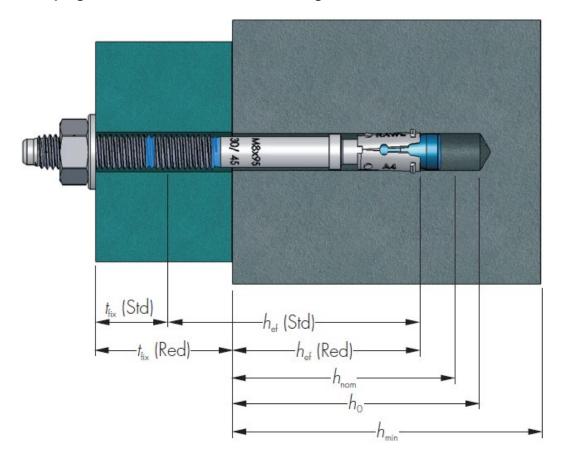
5.1. UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- · Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance
- UKTA number.

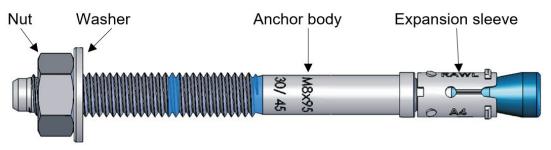
On behalf of the British Board of Agrément

Date of Issue: 22 November 2022

Hardy Giesler Chief Executive Officer


British Board of Agrément,

1st Floor Building 3, Hatters Lane, Croxley Park Watford **WD18 8YG**


ANNEXES

These annexes apply to the product described in the main body of the UK Technical Assessment.

Rawlplug R-HPTIIA4 Stainless Steel Throughbolts - Installed anchor

Rawlplug R-HPTIIA4 Stainless Steel Throughbolts - components

Rawlplug R-HPTIIA4 Stainless Steel Throughbolts

Product description

Installed conditions and components

Annex A 1

Table A1 – Materials

Component	Material	Corrosion resistance
Anchor body	Steel rod on coil cold forged bolts	
Anchor body Steel grade 1.4578, according EN 10263		Class CRC III
Expansion sleeve		
Hexagonal nut	according DIN 934	according EN 1993-1-4
Washer	according DIN 125A or DIN 9021	

Table A2 - Marking

Table AZ - I	viain	IIIQ																			
									N	8 N											
Bolt length	[mm]	6	0	65	75		80	85	9	90	95	5	100	105	5 11	5	120	14	40	150	160
Head marking		E	3	b	С		d	D	I	E	Ε		F	f	G	i	Н	ŀ	<	L	M
Bolt marking		-/	10	-/15	10/2	25 1	5/30	20/35	25	/40	30/4	45	35/50	40/5	5 50/	35 5	55/70	75	/90	85/100	95/110
M10																					
Bolt length	[mm]		65	8	0	85	5	90		95		11:	5	120	13	0	14	0	1	50	180
Head marking			В)	d		е		Е		G		Н	J	J K L		-	Р		
Bolt marking			-/5	-/2	20	5/2	25	10/30	1	15/35		35/5	55	40/60	50/	70	60/	80	70	/90 1	00/120
	M12																				
Bolt length	[mm]	80	100	105	110	115	120	125	135	140) 1:	50	160	180	200	220) 24	10	250	260	280
Head marking		D	F	f	G	g	h	Н	J	K		L	М	Р	R	S	1	Γ	U	V	Χ
Bolt marking		-/5	5/25	10/30	15/35	20/40	25/45	30/50	40/60	45/65	5 55	/75	65/85	85/105	105/125	125/14	45 145	165	55/17	5 165/18	185/205
									M	116											
Bolt length	[mm]	1	00	105	12	25	130	14	0	150)	16	0	180	200	2	20	250)	280	300
Head marking			F	f	H	┨	J	k		L		M		Р	R	,	S	U		Χ	Υ
Bolt marking		-	/5	-/10	5/	25	10/30	20/	40	30/5	0	40/6	60 0	60/80	80/100	100	/120	130/1	501	60/180	180/200

Rawlplug R-HPTIIA4	Stainless Steel	Throughbolts
--------------------	-----------------	--------------

Product descriptionMaterials and marking

Annex A 2

Specifications of intended use

Anchorages subject to:

- Static and quasi-static load
- Fire exposure
- Seismic performance category C1 and C2

Base materials

- Cracked or uncracked concrete.
- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum and C50/60 at maximum according to EN 206:2013.

Use conditions (Environmental conditions)

- Structures subject to dry internal conditions.
- Structures subject to external atmospheric exposure (including industrial and marine environment) or exposure to permanently damp internal condition, if no particular aggressive conditions exist.

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are designed in accordance with the EN 1992-4:2018 and EOTA Technical Report TR 055, December 2016 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055, December 2016.
- Anchorages under fire exposure have to be designed in accordance with EN 1992-4:2018 and EOTA Technical Report TR 055, December 2016.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any components of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the appropriate tools.
- Effective anchoring depth, edge distance and spacing not less than the specified values without minus tolerance
- In cases of aborted drill holes: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and, if under shear or oblique tension load, it is not in the direction of load application.

Rawlplug R-HPTIIA4 Stainless Steel Throughbolts	
Intended use Specification	Annex B 1

Table B1 - Installation parameters

	Drill hole	Max. hole	Standard e	mbedment	Reduced e	mbedment	Installation							
Size	diameter	diameter in fixture	Min. hole depth	Nominal embedment depth	Min. hole depth	Nominal embedment depth	torque							
	d ₀ [mm]	d _f 1) [mm]	h₀ [mm]	h _{nom} [mm]	h₀ [mm]	h _{nom} [mm]	T _{inst} [Nm]							
M8	8	9	65	55	50	40	15							
M10	10	12	79	69	59	49	30							
M12	12	14	90	70	70	60	50							
M16	16	18	110	90	90	80	100							

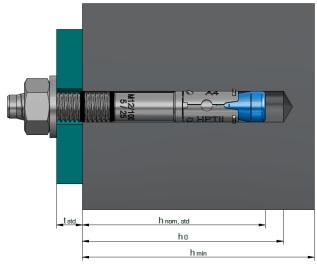
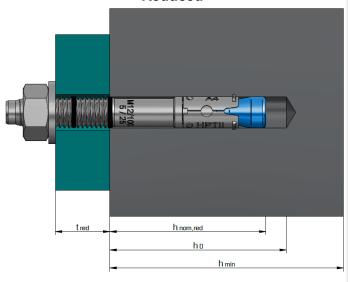

¹⁾ For the design of bigger clearance holes in the fixture see EN 1992-4:2018

Table B2 - Installation parameters - Minimum spacing and edge distance


able B2 - Installation parameters - Willington spacing and edge distance													
Size			M	18	M [*]	10	M12		M16				
			Red ¹⁾	Std	Red ¹⁾	Std	Red	Std	Red	Std			
Minimum thickness of concrete member	$h_{\text{min}} \\$	[mm]	100	100	100	120	100	140	130	170			
Minimum spacing and edge distance in cracked concrete													
Minimum spacing	\textbf{S}_{miin}	[mm]	50	55	70	70	120	90	150	135			
for edge distance	c≥	[mm]	50	55	70	70	95	75	100	105			
Minimum edge distance	C _{min}	[mm]	40	40	50	45	70	55	85	70			
for spacing	s≥	[mm]	80	70	120	90	150	140	200	200			
Minimum spacing and edge distance in un	crack	ed con	crete										
Minimum spacing	Smin	[mm]	50	55	70	70	120	90	150	135			
for edge distance	c≥	[mm]	50	55	70	70	95	75	100	105			
Minimum edge distance	Cmin	[mm]	50	40	60	50	70	55	90	80			
for spacing	s≥	[mm]	50	100	70	115	120	125	150	200			

¹⁾ Use restricted to anchoring statically indeterminate structural components

Standard

Reduced

Rawlplug R-HPTIIA4 Stainless Steel Throughbolts

Intended use Installation parameters Annex B 2

Installation instructions

1.

Drill a hole of required diameter and depth

2.

Clear the hole of drilling dust and debris (using blowpump or equivalent method)

3.

Lightly tap the throughbolt through the fixture into hole with a hammer, until fixing depth is reached

4

Tighten to the recommended torque

5.

Assembled condition of anchor

Rawlplug R-HPTIIA4 Stainless Steel Throughbolts

Intended use Installation instructions Annex B 3

Table C1 - Characteristic resistance under tension load

Steel failure										
Size	M8		M10		M12		M16			
	Red ¹⁾	Std	Red ¹⁾	Std	Red	Std	Red	Std		
Characteristic resistance	$N_{Rk,s}$	[kN]	21.2		33.6		44.8		82.6	
Partial safety factor	γMs	[-]	1.5		1.5		1.5		1.5	

Pull-out failure											
Characteristic resistance in cracked concrete C20/25 NRk,p			[kN]	3.0	6.0	7.5	9.0	9.0	12.0	16.0	25.0
Characteristic resistance in uncracked concrete C20/25 NR			[kN]	7.5	9.0	12.0	16.0	_2)	25.0	_2)	_2)
Installation safety factor γ			[-]	1.2	1.2	1.2	1.0	1.0	1.0	1.0	1.0
Increasing factor											
	C30/37	7		1.07	1.16	1.07	1.26	1.16	1.23	1.18	1.18
Cracked and uncracked concrete	C40/50	Ψc	[-]	1.13	1.33	1.13	1.52	1.32	1.45	1.37	1.37
	C50/60)	_	1.20	1.50	1.20	1.78	1.49	1.67	1.55	1.55

Concrete cone failure												
Factor for concrete cone failure for cracked concrete	k _{cr,N}	[-]	7.7									
Factor for concrete cone failure for uncracked concrete	k _{ucr,N}	[-]	11.0									
Installation safety factor	γinst	[-]	1.2	1.2	1.2	1.0	1.0	1.0	1.0	1.0		
Effective anchorage depth	hef	[mm]	32	47	39	59	48	68	65	85		
Spacing	S _{cr,N}	[mm]	96	141	117	177	144	204	195	255		
Edge distance	C _{cr} ,N	[mm]	48	71	59	89	72	102	98	128		

Splitting failure										
Spacing	Scr,sp	[mm]	160	240	200	300	250	340	320	430
Edge distance	C _{cr,sp}	[mm]	80	120	100	150	125	170	160	215
Installation safety factor	γinst	[-]	1.2	1.2	1.2	1.0	1.0	1.0	1.0	1.0

¹⁾ Use restricted to anchoring statically indeterminate structural components

Table C2 - Displacement under tension load

Size			M8		M10		M12		M16	
			Red ¹⁾	Std	Red ¹⁾	Std	Red	Std	Red	Std
Tension load in cracked concrete	N	[kN]	1.2	2.4	3.0	4.3	4.3	5.7	7.6	11.9
Displacement	δηο	[mm]	1.1	0.5	0.5	1.2	0.8	1.0	0.2	1.0
	δn∞	[mm]	1.8	1.3	0.8	1.2	1.0	1.3	0.6	1.1
Tension load in uncracked concrete	N	[kN]	3.0	3.6	4.8	7.6	8.0	11.9	12.6	18.8
Displacement	δηο	[mm]	0.1	0.3	0.2	0.2	0.1	0.5	0.3	0.5
	δn∞	[mm]	8.0	1.3	8.0	1.2	1.0	1.3	0.6	1.1

¹⁾ Use restricted to anchoring statically indeterminate structural components

Rawlplug R-HPTIIA4 Stainless Steel Throughbolts

Performances

Characteristic resistance under tension load

Displacement under tension load

²⁾ Pull-out failure mode is not decisive

Table C3 - Characteristic resistance under shear load

Steel failure without lever arm										
Size		M8		M10		M12		M ²	16	
			Red ¹⁾	Std	Red ¹⁾	Std	Red	Std	Red	Std
Characteristic resistance	V^0 Rk,s	[kN]	11	.7	18	.5	24	.6	45	5.4
Ductility factor	k_7	[-]	1.	0	1.	0	1.	.0	1.	.0
Partial safety factor	γMs	[-]	1.2	25	1.2	25	1.2	25	1.2	25

Steel failure with lever arm						
Characteristic resistance	M^0 Rk,s	[Nm]	22	45	72	180
Partial safety factor	γMs	[-]	1.25	1.25	1.25	1.25

Concrete pry-out failure										
Factor	k ₈	[-]	1.0	1.0	1.2	1.0	1.0	2.0	2.0	2.0
Installation safety factor	γinst	[-]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Concrete edge failure										
Effective length of anchor	ℓf	[mm]	32	47	39	59	48	68	65	85
Anchor diameter	d_{nom}	[mm]	3	3	1	0	1	2	1	6
Installation safety factor	γinst	[-]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

¹⁾ Use restricted to anchoring statically indeterminate structural components

Table C4 - Displacement under shear load

Size		M8		M10		M12		M ²	16	
			Red ¹⁾	Std	Red ¹⁾	Std	Red	Std	Red	Std
Shear load in cracked and uncracked concrete	V	[kN]	6.7	6.7	5.8	10.6	14.1	14.1	25.9	25.9
Displacement	δνο	[mm]	3.0	3.0	1.5	2.7	2.5	2.5	2.2	2.2
	δγ∞	[mm]	4.5	4.5	2.2	4.1	3.8	3.8	3.8	3.3

¹⁾ Use restricted to anchoring statically indeterminate structural components

Rawlplug R-HPTIIA4 Stainless Steel Throughbolts

Performances

Characteristic resistance under shear load Displacement under shear load

Table C5 – Characteristic values of resistance to tension load under fire exposure¹⁾

		Red ²⁾		M [*]	10	M.	12	l M	16
		Red ²⁾	~						10
			Std	Red ²⁾	Std	Red	Std	Red	Std
$N_{Rk,s,fi}$	[kN]	0.7	0.7	1.5	1.5	2.5	2.5	4.7	4.7
$N_{Rk,p,fi}$	[kN]	0.8	1.5	1.9	2.3	2.3	3.0	4.0	6.3
$N_{Rk,c,fi}$	[kN]	1.0	2.7	1.7	4.8	2.9	6.9	6.1	12.0
$N_{Rk,s,fi}$	[kN]	0.6	0.6	1.2	1.2	2.1	2.1	3.9	3.9
$N_{Rk,p,fi}$	[kN]	8.0	1.5	1.9	2.3	2.3	3.0	4.0	6.3
$N_{Rk,c,fi}$	[kN]	1.0	2.7	1.7	4.8	2.9	6.9	6.1	12.0
$N_{Rk,s,fi}$	[kN]	0.4	0.4	0.9	0.9	1.7	1.7	3.1	3.1
$N_{Rk,p,fi}$	[kN]	8.0	1.5	1.9	2.3	2.3	3.0	4.0	6.3
$N_{Rk,c,fi}$	[kN]	1.0	2.7	1.7	4.8	2.9	6.9	6.1	12.0
3									
$N_{Rk,s,fi}$	[kN]	0.4	0.4	0.8	0.8	1.3	1.3	2.5	2.5
$N_{Rk,p,fi}$	[kN]	0.6	1.2	1.5	1.8	1.8	2.4	3.2	5.0
$N_{Rk,c,fi}$	[kN]	8.0	2.2	1.4	3.9	2.3	5.5	4.9	9.6
Scr,N	[mm]	1] 4 x h _{ef}							
Smin	[mm]	50	55	70	70	120	90	150	135
C _{cr,N}	[mm]								
C _{min}									
	NRk,p,fi NRk,c,fi NRk,s,fi NRk,c,fi NRk,c,fi NRk,c,fi NRk,c,fi NRk,c,fi S NRk,c,fi S NRk,c,fi S NRk,c,fi	NRk,s,fi [kN] NRk,p,fi [kN] NRk,c,fi [kN] Scr,N [mm] Smin [mm] Ccr,N [mm]	NRk,p,fi	N _{Rk,p,fi} [kN] 0.8 1.5 N _{Rk,c,fi} [kN] 1.0 2.7 N _{Rk,s,fi} [kN] 0.6 0.6 N _{Rk,p,fi} [kN] 0.8 1.5 N _{Rk,c,fi} [kN] 0.8 1.5 N _{Rk,c,fi} [kN] 0.4 0.4 N _{Rk,p,fi} [kN] 0.8 1.5 N _{Rk,c,fi} [kN] 0.8 1.5 N _{Rk,c,fi} [kN] 0.8 1.5 N _{Rk,c,fi} [kN] 0.0 2.7 S N _{Rk,s,fi} [kN] 0.4 0.4 N _{Rk,p,fi} [kN] 0.6 1.2 N _{Rk,c,fi} [kN] 0.6 1.2 N _{Rk,c,fi} [kN] 0.8 2.2 S _{Cr,N} [mm] S _{min} [mm] 50 55 C _{Cr,N} [mm] C _{min} = 2 x h _{ef} Ho	N _{Rk,p,fi} [kN] 0.8 1.5 1.9	NRK,p,fi [kN] 0.8 1.5 1.9 2.3	NRk,p,fi [KN] 0.8 1.5 1.9 2.3 2.3 NRk,c,fi [KN] 1.0 2.7 1.7 4.8 2.9 NRk,s,fi [KN] 0.6 0.6 1.2 1.2 2.1 NRk,p,fi [KN] 0.8 1.5 1.9 2.3 2.3 NRk,c,fi [KN] 1.0 2.7 1.7 4.8 2.9 NRk,s,fi [KN] 0.4 0.4 0.9 0.9 1.7 NRk,p,fi [KN] 0.8 1.5 1.9 2.3 2.3 NRk,c,fi [KN] 0.8 1.5 1.9 2.3 2.3 NRk,c,fi [KN] 1.0 2.7 1.7 4.8 2.9 S	NRk,p,fi [kN] 0.8 1.5 1.9 2.3 2.3 3.0 NRk,c,fi [kN] 1.0 2.7 1.7 4.8 2.9 6.9 NRk,s,fi [kN] 0.6 0.6 1.2 1.2 2.1 2.1 NRk,p,fi [kN] 0.8 1.5 1.9 2.3 2.3 3.0 NRk,c,fi [kN] 1.0 2.7 1.7 4.8 2.9 6.9 NRk,s,fi [kN] 0.4 0.4 0.9 0.9 1.7 1.7 NRk,p,fi [kN] 0.8 1.5 1.9 2.3 2.3 3.0 NRk,c,fi [kN] 0.6 1.2 1.5 1.8 1.8 2.4 NRk,c,fi [kN] 0.8 2.2 1.4 3.9 2.3 5.5 Scr,N [mm]	N _{Rk,p,fi} [kN] 0.8 1.5 1.9 2.3 2.3 3.0 4.0

¹⁾ In absence of other national regulations the partial safety factor for resistance under fire exposure. $\gamma_{M,fi}$ = 1,0 is recommended

Table C6 – Characteristic values of resistance to shear load under fire exposure

Table C6 – Characteristic values of resistance to shear load under fire exposure										
Size			M	8	M	10	M ⁻	12	M ²	16
			Red ¹⁾	Std	Red ¹⁾	Std	Red)	Std	Red	Std
Characteristic fire resistance duration at 30 minutes										
Steel failure without lever arm	$V_{Rk,s,fi}$	[kN]	0.	7	1	.5	2.5		4.	7
Steel failure with lever arm	$M_{Rk,s,fi}$	[Nm]	0.	0.7		.9	3.	.9	10	.0
Characteristic fire resistance duration at 60 minutes										
Steel failure without lever arm	$V_{Rk,s,fi}$	[kN]	0.	6	1	.2	2.	.1	3.	9
Steel failure with lever arm	$M_{Rk,s,fi}$	[Nm]	0.	6	1	.5	3.	.3	8.	3
Characteristic fire resistance duration at 90 minutes										
Steel failure without lever arm	$V_{Rk,s,fi}$	[kN]	0.4		0.9		0.9 1.		3.	1
Steel failure with lever arm	$M_{Rk,s,fi}$	[Nm]	0.	4	1	.2	2.	.6	6.	7
Characteristic fire resistance duration at 120 minutes	S									
Steel failure without lever arm	$V_{Rk,s,fi}$	[kN]	0.	4	0	.8	1.	.3	2.	5
Steel failure with lever arm	$M_{Rk,s,fi}$	[Nm]	0.	4	1	.0	2.	.1	5.	3
Concrete pry-out failure										
Factor ²⁾	k ₈	[-]	-	-	1.2	-	-	-	-	-
Concrete edge failure					_{Rk,c,fi} in co	ncrete C	20/25 to	C50/60 i	s determi	ned by:
-	$V_{Rk,c,fi}^0 =$	0,25 x	V ⁰ _{Rk,c(≤90)}	and						
	$V_{Rk,c,fi}^0 =$	0,20 x	V ⁰ _{Rk,c(≤120}))						
	with the	initial v	alue of th	ne chara	cteristic	resistanc	e V ⁰ _{Rk,c} in	cracked	d concrete	Э
	C20/25 (under i	normal te	mperatu	ıre					

¹⁾ Use restricted to anchoring statically indeterminate structural components

Rawlplug R-HPTIIA4 Stainless Steel Throughbolts Performances Characteristic values of resistance under fire exposure Annex C 3

²⁾ Use restricted to anchoring statically indeterminate structural components

²⁾ The values of factor k₈ and relevant values of N_{Rk,c,fi} given in the Table C5 have to be considered in the design

Table C7 - Characteristic values of resistance under seismic action category C1

Table of Thialactoricae values of recipitation and of colonic action category of										
Size			N	18	M	10	M ⁻	12	M	16
			Red ¹⁾	Std	Red ¹⁾	Std	Red ¹⁾	Std	Red ¹⁾	Std
Tension load									_	
Steel failure										
Characteristic resistance	$N_{Rk,s,eq}$	[kN]	21	1.2	33	3.6	44	.8	82	2.6
Partial safety factor	γMs,eq	[-]	1	.5	1.	.5	1.	.5	1.	.5
Pull-out failure										
Characteristic resistance in concrete C20/25	$N_{Rk,p,eq}$	[kN]	3.0	6.0	7.5	9.0	9.0	12.0	16.0	25.0
Installation safety factor	γinst,eq	[-]	1.2	1.2	1.2	1.0	1.0	1.0	1.0	1.0
Shear load										
Steel failure without lever arm										
Characteristic resistance	V^0 Rk,s,eq	[kN]		6.7		12.5	18	3,4	39	9,0
Partial safety factor	γMs,eq	[-]	1	25	1.:	25	1.3	25	1.3	25

¹⁾ Use restricted to anchoring statically indeterminate structural components

Rawlplug R-HPTIIA4 Stainless Steel Throughbolts

Performances

Characteristic values of resistance under seismic action category C1

Table C8 – Characteristic values of resistance under seismic action category C2

Size			M	10	M	12
			Red ¹⁾	Std	Red ¹⁾	Std
Tension load	-	-			-	
Steel failure						
Characteristic resistance	$N_{Rk,s,C2}$	[kN]	33	3,6	44	-,8
Partial safety factor	γMs,C2	[-]	1.	.5	1.	.5
Pull-out failure						
Characteristic resistance in concrete C20/25	$N_{Rk,p,C2}$	[kN]	2.6	3.0	3.0	4.2
Installation safety factor	γinst	[-]	1.2	1.0	1.0	1.0
Shear load	_					
Steel failure without lever arm						
Characteristic resistance	$V_{Rk,s,C2}$	[kN]		8.3		11.1
Partial safety factor	γMs,C2	[-]	1.25	1.25	1.25	1.25
Factor for annular gap	αgap	[-]		0	.5	

¹⁾ Use restricted to anchoring statically indeterminate structural components

Table C9 - Displacement under tensile and shear load - seismic category C2

Size		M10	M12
$\delta_{\text{N,eq(DLS)}}$	[mm]	3.5	5.4
$\delta_{\text{N,eq(ULS)}}$	[mm]	9.9	13.4
δ V,eq(DLS)	[mm]	4.1	4.4
$\delta_{V,eq(ULS)}$	[mm]	10.0	9.9

Rawlplug I	R-HPTIIA4	Stainless Steel	Throughbolts
------------	-----------	-----------------	--------------

Performances

Characteristic values of resistance under seismic action category C2

British Board of Agrément, 1st Floor Building 3, Hatters Lane, Croxley Park Watford **WD18 8YG**