

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6099 of 01/06/2022
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	R-CAS-V
Product family to which the construction product belongs:	Area Code 33, Bonded fasteners with fastener rod of sizes M8 to M30 made of galvanized steel or stainless steel for use in uncracked concrete
Manufacturer:	RAWLPLUG S.A. ul. Kwidzyńska 6 51-416 Wrocław Poland
Manufacturing plant(s):	Manufacturing Plant no. 3
This UK Technical Assessment contains:	15 pages including 3 annexes which form an integral part of this assessment
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330499-00-0601 "Bonded fasteners for use in concrete"

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1. Technical description of the product

The R-CAS-V is a bonded fastener (capsule type) consisting of chemical mortar glass capsules and threaded fastener rod of sizes M8 to M30 made of:

- galvanized carbon steel,
- stainless steel,
- high corrosion resistant stainless steel, with hexagon nut and washer.

The glass capsule is placed into a drilled hole previously cleaned and the threaded rod is driven by machine with simultaneous hammering and turning. The threaded rod is anchored by the bond between the threaded rod, chemical mortar and concrete.

The threaded rods are available for all diameters with two type of tip end: a one side 45° chamfer or a two sides 45° chamfer.

An illustration and description of the products is given in Annexes A.

2. Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the fasteners are used in compliance with the specifications and conditions given in Annexes B.

The performances given in this UK Technical Assessment are based on an assumed working life of the fasteners of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristic is detailed in Annexes C.

3.2 Safety in case of fire (BWR 2)

Essential characteristics	Performances
Reaction to fire	Fasteners satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Health, hygiene and the environment (BWR 3)

Regarding dangerous substances, there may be additional legislative requirements falling outside of the scope of this document. These requirements must be complied with as appropriate.

3.4 Safety and accessibility in use (BWR 4)

For this BWR, the same criteria are valid as for the BWR for Mechanical resistance and stability (BWR 1).

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant

3.7 Sustainable use of natural resources (BWR 7)

No performance assessed.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1 System of assessment and verification of constancy of performance

According to UKAD No. 330499-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011 as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

Product	Intended use	Level or class	System
Metal fasteners for use in concrete	For fixing and/or supporting to concrete structural elements (which contributes to the stability of the works) or heavy units	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

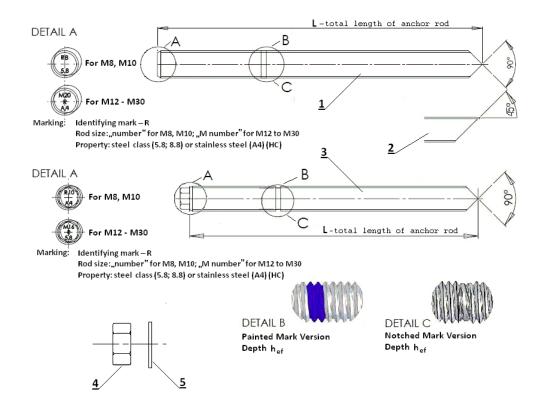
5.1 UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance
- UKTA number.

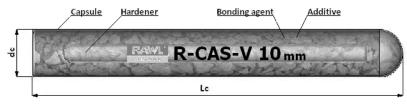
On behalf of the British Board of Agrément

Date of Issue: 1 June 2022

Hardy Giesler
Chief Executive



British Board of Agrément,


Bucknalls Lane, Watford, Hertfordshire WD25 9BA

ANNEXES

These annexes apply to the product described in the main body of the UK Technical Assessment.

- 1. Anchor rod R-STUDS-(88),(A4),(HC)-FL
- 2. 45° shape with anchor rod
- 3. Anchor rod R-STUDS-{88},{A4},(HC) with the hexagonal tip
- 4. Hexagonal nut
- 5. Washer

Marking: Identifying mark — Identifying capsule: R-CAS-V Size rod: 8 to 30 Drilling diameter

R-CAS-V (glass capsules)	8 mm	10 mm	12 mm	16 mm	20 mm	24 mm	30 mm
L _c [mm]	85 ± 3%	85 ± 3%	95 ± 2%	95 ± 2%	180 ± 2%	215 ± 1%	270 ± 1%
d _c [mm]	9.25	10.75	12.65	16.75	21.55	23.75	33.20
R-STUDS (anchor rods)	M8	M10	M12	M16	M20	M24	M30
L [mm]	110, 160, 250	130, 170, 190, 220, 250	160, 190, 220, 260, 300	190, 220, 260, 300, 310, 380	260, 350	300, 400	380

R-CAS-V

Product description

Characteristics of the product

Annex A 1

Table A1: Metal components

	Designation					
Part	Steel, zinc plated	High corrosion resistance stainless steel (HCR)				
Threaded rod	Steel, property class 5.8 to 12.9 acc. to EN ISO 898-1 electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684	Material 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506			
Hexagon nut	Steel, property class 5 to 12, acc. to EN ISO 898-2; electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684	Material 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506			
Washer	Steel, acc. to EN ISO 7089; electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684	Material 1.4401, 1.4404, 1.4571 acc. to EN 10088	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088			

Table A2: Chemical mortar

Product	Composition
	Bonding agent: Vinylester styrene free resin
R-CAS-V	Hardener: Dibenzoyl peroxide
	Additive: Quartz sand (filler)

R-CAS-V	
Product description Materials	Annex A 2

SPECIFICATION OF INTENDED USE

Use:

The fasteners are intended to be used for anchorages for which requirements for *mechanical resistance and* stability and safety in use with regard to Basic Work Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

Static and quasi-static loads: M8 to M30.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206.
- Uncracked concrete: M8 to M30.

Temperature range:

The anchors may be used in the following temperature range:

- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).

Use conditions (environmental conditions):

- Elements made of galvanized steel may be used in structures subject to dry internal conditions.
- Elements made of stainless steel may be used in structures subject to dry internal conditions and also in concrete subject to external exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).
- Elements made of high corrosion resistant stainless steel may be used in structures subject to dry internal conditions and also in concrete subject to external exposure or exposure in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Installation:

- Installation temperature ≥ -5°C
- Dry or wet concrete (use category 1): M8 to M30.
- Flooded holes with the exception of seawater (use category 2): M8 to M30.
- All fastener sizes are suitable for rotary hammer drilled holes: M8 to M30.

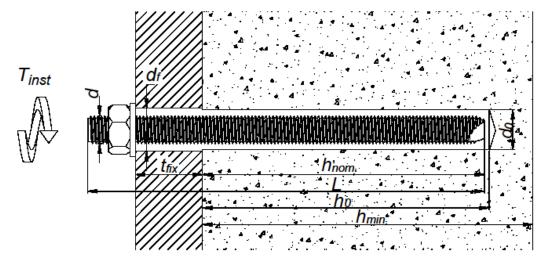
Design methods:

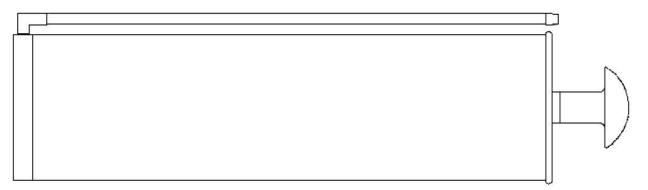
EOTA Technical Report TR 029 (September 2010) or CEN/TS 1992-4:2009.

R-CAS-V	
Intended use Specifications	Annex B 1

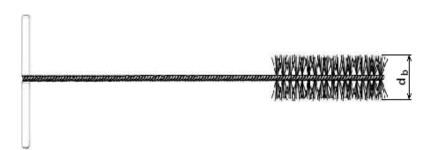
Table B1: Installation data

Size		M8	M10	M12	M16	M20	M24	M30
Diameter of anchor rod	d [mm]	8	10	12	16	20	24	30
Nominal drilling diameter	d ₀ [mm]	10	12	14	18	24	28	35
Maximum diameter hole in the fixture	d _f [mm]	9	12	14	18	22	26	32
Effective embedment depth	h _{ef} = h _{nom} [mm]	80	90	110	125	170	210	270
Depth of the drilling hole	h ₀ [mm]	h _{ef} + 5 mm						
Minimum thickness of concrete member	h _{min} [mm]	120	130	140	180	230	270	340
Torque moment	T _{inst} [Nm]	10	20	40	80	120	180	300
Minimum spacing	s _{min} [mm]	0.5 · h _{ef} 0.5 · h _{ef}						
Minimum edge distance	c _{min} [mm]							




Table B2: Minimum curing time

Concrete temperature	Minimum curing time ¹⁾
-5°C	8 h
0°C	4 h
5°C	2.5 h
10°C	2 h
15°C	1.5 h
20°C	45 min
30°C	20 min
40°C	10 min


¹⁾ Curing time shall be doubled for wet concrete.

R-CAS-V	
Intended use Installation data	Annex B 2

Manual blower pump

Steel brush

Brush diameter

Size rod	M8	M10	M12	M16	M20	M24	M30
Brushes diameter d _b (mm)	12	14	16	20	26	30	37

R-CAS-V Intended use Cleaning tools Annex B 3

	Drill a hole to the required diameter and depth using a rotary hammer drilling machine.
×4	4x blowing starting from the bottom of the drilled hole using the hand pump.
×4	4x brushing (at least) using the specified steel brush.
x4	4x blowing starting from the bottom of the drilled hole using the hand pump.
→	Insert the glass capsule into the cleaned hole.
	Positioning the stud into the drilled hole. Switch on the drilling machine (simultaneous hammering and turning) and drive the stud into the drilled hole until the embedment depth is reached. Setting control: Mortar excess flows out at the top of the drilled hole.
	Leave the fixing undisturbed until the cure time elapses.
	Attach the fixture and tighten the nut to the required torque.

R-CAS-V	
Intended use Installation instruction	Annex B 4

Table C1a: Characteristic values of resistance under tension loads

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure									
Steel failure with threaded rod grad	e 5.8								
Characteristic resistance	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	280
Partial safety factor	γ _{Ms} 1)	[-]				1.50			
Steel failure with threaded rod grad	e 8.8								
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	126	196	282	449
Partial safety factor	γ _{Ms} 1)	[-]				1.50			
Steel failure with threaded rod grad	e 10.9								
Characteristic resistance	N _{Rk,s}	[kN]	37	58	84	157	245	353	561
Partial safety factor	γ _{Ms} 1)	[-]				1.40			
Steel failure with threaded rod grad									
Characteristic resistance	$N_{Rk,s}$	[kN]	44	70	101	188	294	424	673
Partial safety factor	γ _{Ms} ¹⁾	[-]				1.40			
Steel failure with stainless steel three		de A4-70							
Characteristic resistance	N _{Rk,s}	[kN]	26	41	59	110	171	247	393
Partial safety factor	γ _{Ms} 1)	[-]				1.87			
Steel failure with stainless steel three									
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	126	196	282	449
Partial safety factor	γ _{Ms} ¹⁾	[-]				1.60	Į.	Į.	
Steel failure with high corrosion thre									
Characteristic resistance	N _{Rk,s}	[kN]	26	41	59	110	171	247	393
Partial safety factor	γ _{Ms} ¹⁾	[-]				1.87			
Combined pull-out and concrete									
Characteristic bond resistance in	τ _{Rk,ucr}	[N/mm	13	12	12	11	10	9	8.5
uncracked concrete C20/25	UNK, UCI	2]		'-			10		0.0
		C30/3			1.04			1	.0
Increasing factor for τ _{Rk,ucr}		C40/5							
in uncracked concrete	Ψ_c	0			1.07			1	.0
in anoracida conorcio		C50/6							
		0			1.09			1	.0
Installation safety factor for use category 1	$\gamma_2^{(2)} = \gamma_{\text{inst}}^{(3)}$	[-]				1.2			
Installation safety factor for use category 2	$\gamma_2^{(2)} = \gamma_{\text{inst}}^{(3)}$	[-]				1.4			
Factor acc. CEN/TS 1992-4-5:2009, § 6.2.2.3 and § 6.2.3.1	k ₈ = k _{ucr} ³⁾	[-]	10.1						
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	270
	C _{cr,N}	[mm]				1.5 · he	f		
Edge distance and spacing	S _{cr,N}	[mm]	3.0 · h _{ef}						
1) In the absence of other nationa		[[]	1						

R-CAS-V	
Performances Characteristic resistance under tension loads in uncracked concrete. Design method: EOTA TR 029 or CEN/TS 1992-4:2009	Annex C 1

¹⁾ In the absence of other national regulations
2) Parameter for design according to EOTA Technical Report TR 029
3) Parameter for design according to CEN/TS 1992-4-5:2009

Table C1b: Characteristic values of resistance under tension loads

Size			M8	M10	M12	M16	M20	M24	M30
Splitting failure									
Effective anchorage depth	h _{ef}	[mm]	80	90	110	125	170	210	270
Edge distance and	Ccr,sp ⁴⁾⁵⁾	[mm]	$c_{cr,sp} = hef * \left(\frac{\tau_{k,ucr}}{8}\right)^{0.4} * \left(3.1 - 0.7 \frac{h}{h_{ef}}\right)$						
spacing	Scr,sp	[mm]				2 · c _{cr,sp}			
Installation safety factor for use category 1	$\gamma_2^{(2)} = \gamma_{\text{inst}}^{(3)}$	[-]	1.2						
Installation safety factor for use category 2	$\gamma_2^{(2)} = \gamma_{\text{inst}}^{(3)}$	[-]	1.4						

Table C2: Characteristic values of resistance under shear loads

- steel failure without lever arm 1)

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure with threaded rod grade	9 5.8								
Characteristic resistance	$V_{Rk,s}$	[kN]	9	14	21	39	61	88	140
Partial safety factor	γMs ²⁾	[-]	1.25						
Steel failure with threaded rod grade	8.8								
Characteristic resistance	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	224
Partial safety factor	γMs ²⁾	[-]				1.25			
Steel failure with threaded rod grade	10.9								
Characteristic resistance	$V_{Rk,s}$	[kN]	18	29	42	78	122	176	280
Partial safety factor	γMs ²⁾	[-]				1.50			
Steel failure with threaded rod grade	12.9								
Characteristic resistance	$V_{Rk,s}$	[kN]	22	35	51	94	147	212	337
Partial safety factor	γ _{Ms} ²⁾	[-]				1.50			
Steel failure with stainless steel three	aded rod gra	de A4-70							
Characteristic resistance	$V_{Rk,s}$	[kN]	13	20	29	55	86	124	196
Partial safety factor	γ _{Ms} ²⁾	[-]				1.56			
Steel failure with stainless steel three		de A4-80							
Characteristic resistance	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	224
Partial safety factor	γMs ²⁾	[-]	1.33						
Steel failure with high corrosion sta	inless steel th	readed re	od gra	de 70					
Characteristic resistance	$V_{Rk,s}$	[kN]	13	20	29	55	86	124	196
Partial safety factor	γ _{Ms} ²⁾	[-]				1.56			

Ductility factor acc. CEN/TS 1992-4-5:2009, § 6.3.2.1: k₂ = 1.0

In the absence of national regulations

R-CAS-V	
Performances Characteristic resistance under shear loads. Design method: EOTA TR 029 or CEN/TS 1992-4:2009	Annex C 2

h = concrete member thickness

Parameter for design according to EOTA Technical Report TR 029

Parameter for design according to CEN/TS 1992-4-5:2009

For h/h_{ef} ≤ 2,4; if h/h_{hef} > 2,4 c_{cr,sp} = 1,5 x hef

⁵⁾ τ_{k.ucr} from Table C1a

Table C3: Characteristic values of resistance under shear loads - steel failure with lever arm

Size			М8	M10	M12	M16	M20	M24	M30
Steel failure with threaded rod grade	5.8								
Characteristic resistance	M^0 Rk,s	[Nm]	19	37	65	166	324	561	1124
Partial safety factor	γMs ¹⁾	[-] 1.25							
Steel failure with threaded rod grade	8.8								
Characteristic resistance	M^0 Rk,s	[Nm]	30	60	105	266	519	898	1799
Partial safety factor	γMs ¹⁾	[-]				1.25			
Steel failure with threaded rod grade	10.9								
Characteristic resistance	M ⁰ Rk,s	[Nm]	37	75	131	333	649	1123	2249
Partial safety factor	γMs ¹⁾	[-]				1.50			
Steel failure with threaded rod grade	12.9								
Characteristic resistance	M ⁰ Rk,s	[Nm]	45	90	157	400	779	1347	2699
Partial safety factor	γ _{Ms} 1)	[-]				1.50			
Steel failure with stainless steel three	aded rod gra	de A4-7	0						
Characteristic resistance	M ⁰ Rk,s	[Nm]	26	52	92	233	454	786	1574
Partial safety factor	γMs ¹⁾	[-]				1.56			
Steel failure with stainless steel three	aded rod gra	de A4-8	0						
Characteristic resistance	M ⁰ Rk,s	[Nm]	30	60	105	266	519	898	1799
Partial safety factor	γMs ¹⁾	[-]	1.33						
Steel failure with high corrosion sta	inless steel th	readed	rod gr	ade 70					
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1574
Partial safety factor	γMs ¹⁾	[-]				1.56			

¹⁾ In the absence of national regulations

R-CAS-V	
Performances Characteristic resistance under shear loads. Design method: EOTA TR 029 or CEN/TS 1992-4:2009	Annex C 3

Table C4: Characteristic values of resistance under shear loads – pry-out and concrete edge failure

Size			M8	M10	M12	M16	M20	M24	M30
Pry-out failure									
Factor acc. to equation (5.7) of TR 029 or acc. to equation (27) of CEN/TS 1992-4-5:2009	$k^{1)} = k_3^{2)}$	[-]				2			
Concrete edge failure: see clause 5.2	2.3.4 of Techi	nical Repo	ort TR ()29					
Effective anchor length	l _f	[mm]	80	90	110	125	170	210	270
Diameter of the anchor	$d^{(1)} = d_{nom}$	[mm]	8	10	12	16	20	24	30

¹⁾ Parameter for design according to EOTA Technical Report TR 029

Table C5: Displacements under tension loads

Size			M8	M10	M12	M16	M20	M24	M30
Characteristic displacement	on loads	in unc	racked o	concrete	C20/25	to C50/	60		
Admissible service load	N	[kN]	11.5	14.2	22.1	30.0	47.3	62.9	95.1
Displacement	δηο	[mm]	0.30	0.30	0.35	0.35	0.40	0.45	0.50
ызріасентені	δn∞	[mm]	0.65	0.65	0.65	0.65	0.65	0.65	0.65

These values are suitable for each temperature range and categories specified in Annex B1

Table C6: Displacements under shear loads

Size			M8	M10	M12	M16	M20	M24	M30
Characteristic displacement under shear loads in uncracked concrete C20/25 to C50/60									
Admissible service load	V	[kN]	3.7	5.8	8.4	15.7	24.5	35.3	55.6
Displacement	δνο	[mm]	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Displacement	δν∞	[mm]	3.7	3.7	3.7	3.7	3.7	3.7	3.7

These values are suitable for each temperature range and categories specified in Annex B1

R-CAS-V

Performances

Characteristic resistance under shear loads. Displacements under service loads: Tension and shear loads. Design method: EOTA TR 029 or CEN/TS 1992-4:2009

Annex C 4

²⁾ Parameter for design according to CEN/TS 1992-4-5:2009

British Board of Agrément, Bucknalls Lane,

Bucknalls Lane Watford, Hertfordshire WD25 9BA