

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6199 of 28/07/2022
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	R-LX
Product family to which the construction product belongs:	Area Code 33, Concrete screw for use in cracked and uncracked concrete
Manufacturer:	RAWLPLUG S.A. ul. Kwidzyńska 6 51-416 Wrocław Poland
Manufacturing plant(s):	Manufacturing Plant No. 2
This UK Technical Assessment contains:	17 pages including 3 annexes which form an integral part of this assessment
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330232-00-0601 <i>Mechanical fasteners</i> <i>for use in concrete</i> and EAD 330011-00-0601 <i>Adjustable concrete screw</i>

Page 1 of 17 of UK Technical Assessment UKTA-0836-22/6199

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the British Board of Agrément. Any partial reproduction must be identified as such.

1 Technical description of the product

The R-LX concrete screw are a range of anchors manufactured from heat-treated and zincplated (ZP) or zinc-flaked (ZF) steel. The anchor is screwed into a predrilled cylindrical drill hole. The anchor incorporates a special thread that cuts an internal thread into a concrete member while setting providing a mechanical interlock.

The product range and description is given in Annex A.

2 Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The performances given in this UK Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential Characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C1 and C2
Displacements under tension and shear loads	See Annex C2
Characteristic resistance and displacements for seismic performance categories C1 and C2	See Annex C3 and C4

3.2 Safety in case of fire (BWR 2)

Characteristic	Performance
Reaction to fire	Anchors satisfy requirements for Class A1
Resistance to fire	Annex C5

3.3 Health, hygiene and the environment (BWR 3)

Not relevant.

3.4 Safety and accessibility in use (BWR 4)

For Basic Requirement Safety and accessibility in use are included under Basic Requirement Mechanical resistance and stability (BWR 1).

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

Performance not assessed.

3.8 Methods used for assessment

The assessment of the products has been made in accordance with UKAD 330232-00-0601 and UKAD 330011-00-0601.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1 System of assessment and verification of constancy of performance

According to UKAD No. 330232-00-0601, UKAD No. 330011-00-0601, and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011 as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

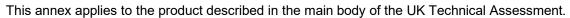
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

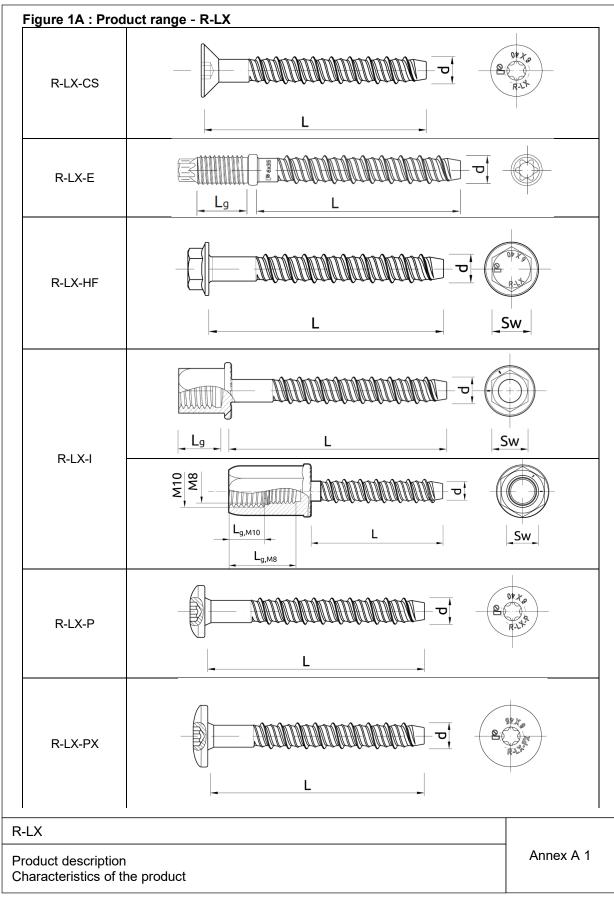
5.1 UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance
- UKTA number.

On behalf of the British Board of Agrément

Date of Issue: 28 July 2022


Hardy Giesler Chief Executive Officer



British Board of Agrément, 1st Floor Building 3

1st Floor Building 3 Hatters Lane Croxley Park Watford WD18 8YG

ANNEX A : R-LX product specification



ANNEX A : R-LX - product specification (continued)

Anchor size			R-LX-05	R-LX-06	R-LX-08	R-LX-10	R-LX-12	R-LX-14
Thread size	d	mm	6.2	7.5	9.9	12.4	14.9	17.4
Length of anchor	L	mm	45 - 240	45 - 240	60 - 240	60 - 240	75 - 240	80 - 240
Nominal hole diameter	d_0	mm	5	6	8	10	12	14
Tip chamfer	h₅	mm	2.5	3	4	4.5	6	6
Pitch	ht	mm	4.2	5	6.7	8.3	10	11.6
Matarial: carbon ataal	\mathbf{f}_{uk}	N.mm ⁻²	1300	1250	1200	1050	1000	1020
Material: carbon steel	f _{yk}	N.mm ⁻²	1150	1100	1050	950	900	800
Coating	Ziı	nc Plated (ZP ≥ 5 µm)	or Zinc Fl	aked (ZF ≥	5 µm)		

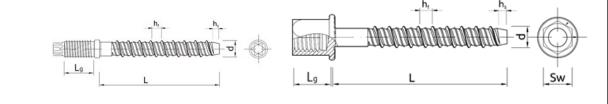

Figure A1 : Anchors R-LX-HF, R-LX-CS, R-LX-P and R-LX-PX

Table A2: Dimensions and materials for R-LX-E and R-LX-I

Anchor size			R-LX-05	R-LX-06	R-LX-08	R-LX-10
Thread size	d	mm	6.2	7.5	9.9	12.4
Length of anchor R-LX-E	L	mm	-	55 - 240	60 - 240	65 - 240
Length of anchor R-LX-I	L	mm	45 - 75	40 -150	51 - 150	56 - 160
Nominal hole diameter	d_0	mm	5	6	8	10
Tip chamfer	hs	mm	2.5	3	4	4.5
Pitch	ht	mm	4.2	5	6.7	8.3
External thread (R-LX-E)		-	-	M8	M10	M12
Internal thread (R-LX-I)		-	M6	M6, M8, M10, M8/M10	M12	M12, M16
Material: carbon steel	\mathbf{f}_{uk}	N.mm ⁻²	1300	1250	1200	1050
iviaterial. Carbon Steel	f _{yk}	N.mm ⁻²	1150	1100	1050	950
Coating		Zi	nc Plated (ZP ≥ 5 µm) or Zi	nc Flaked (ZF	≥ 5 µm)

Figure A2 : Anchors R-LX-E and R-LX-I

R-LX

Product description Dimensions and materials Annex A 2

ANNEX B : Installation

B1 Intended use - specifications

Anchorages subject to:

- Static and quasi-static loads: all sizes and all embedment depth.
- Anchorages with requirements related to resistance to fire: all sizes and all embedment depths.
- Seismic performance categories C1 and C2: R-LX-08, R-LX-10 and R-LX-14.

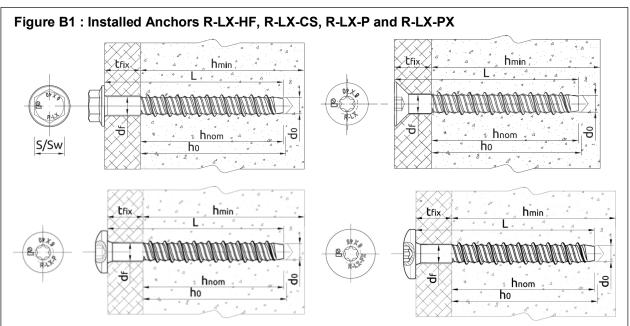
Base material:

- Reinforced or unreinforced normal weight concrete with strength class C20/25 to C50/60 according to EN 206.
- Uncracked and cracked concrete: all sizes.

Use conditions (environmental conditions):

Structures subject to dry internal conditions.

Design:


- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be transmitted. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static and quasi-static loads, under fire exposure and under seismic actions are designed in accordance with EN 1992-4:2018.

Installation:

- Rotary hammer drilling only: all sizes and all embedment depths.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.
- Adjustment according to Figure B3 and Table C1.

R-LX	
Intended use Specification	Annex B 1

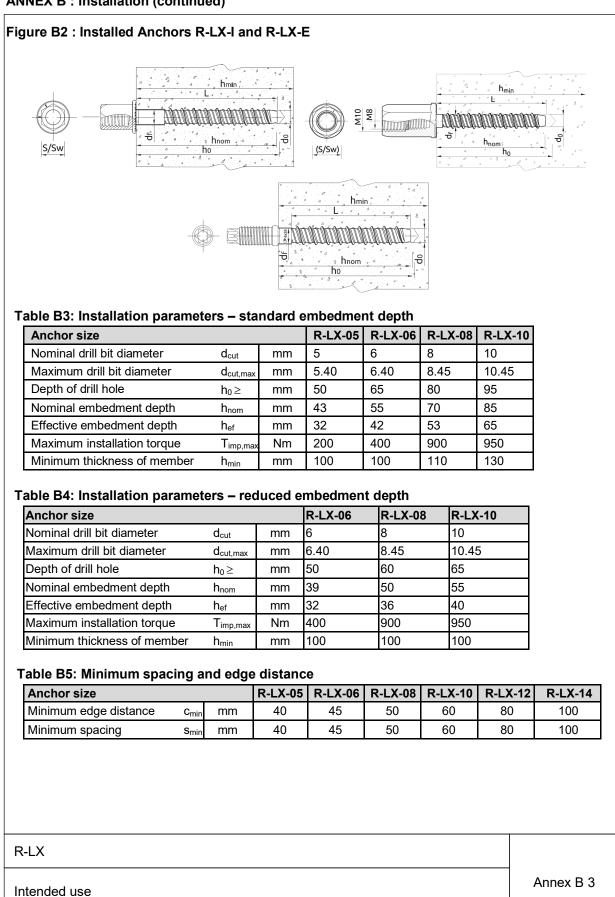
Installed anchor R-LX-HF, R-LX-CS, R-LX-P and R-LX-PX

Table B1: Installation parameters - standard embedment depth

Anchor size			R-LX-05	R-LX-06	R-LX-08	R-LX-10	R-LX-12	R-LX-14
Nominal drill bit diameter	d _{cut}	mm	5	6	8	10	12	14
Maximum drill bit diameter	d _{cut,max}	mm	5.40	6.40	8.45	10.45	12.50	14.50
Depth of drill hole*	$h_0 \geq$	mm	50	65	80	95	110	130
Nominal embedment depth	\mathbf{h}_{nom}	mm	43	55	70	85	100	120
Effective embedment depth	h _{ef}	mm	32	42	53	65	76	92
Maximum installation torque	T _{imp,max}	Nm	200	400	900	950	950	950
Clearance hole in the fixture	d _f ≤	mm	7	9	12	14	16	18
Minimum thickness of member	\mathbf{h}_{min}	mm	100	100	110	130	155	190
Thickness of the fixture, max.	t _{fix}	mm			L	- h _{nom}		

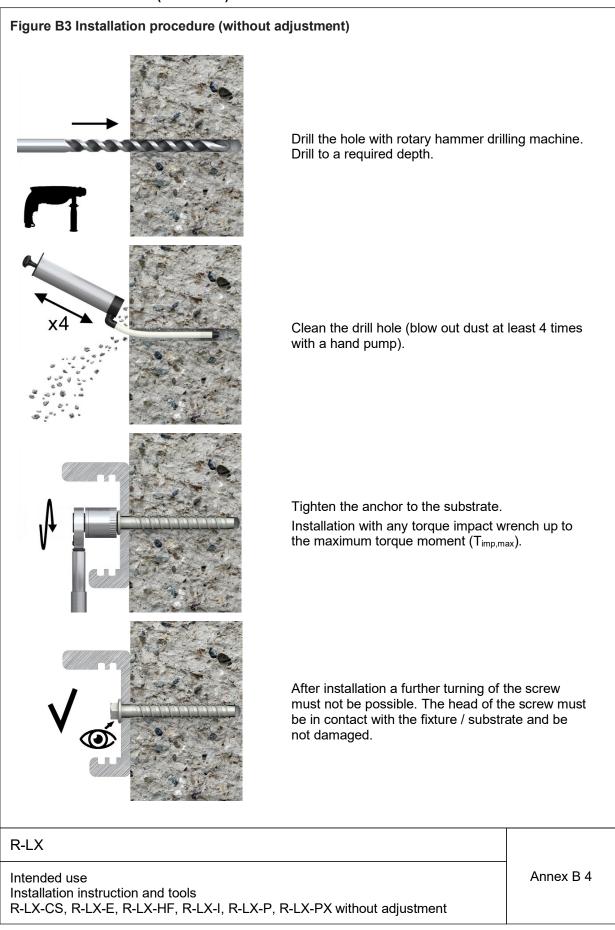
* Real depth of drill hole $h_0 = L + 10 - t_{fix}$

Table B2: Installation parameters – reduced embedment depth


Anchor size			R-LX-06	R-LX-08	R-LX-10	R-LX-12	R-LX-14
Nominal drill bit diameter	d _{cut}	mm	6	8	10	12	14
Maximum drill bit diameter	$d_{cut,max}$	mm	6.40	8.45	10.45	12.50	14.50
Depth of drill hole	$h_0 \geq$	mm	50	60	65	70	85
Nominal embedment depth	h _{nom}	mm	43	50	55	60	75
Effective embedment depth	h _{ef}	mm	32	36	40	42	54
Maximum installation torque	T _{imp,max}	Nm	400	900	950	950	950
Clearance hole in the fixture	d _f ≤	mm	9	12	14	16	18
Minimum thickness of member	h _{min}	mm	100	100	100	110	110
Thickness of the fixture, max.	t _{fix}	mm				L - h _{nom}	

* Real depth of drill hole $h_0 = L + 10 - t_{fix}$

R-LX


Intended use Installation parameters Annex B 2

ANNEX B : Installation (continued)

Installation parameters

ANNEX B : Installation (continued)

ANNEX B : Installation (continued)

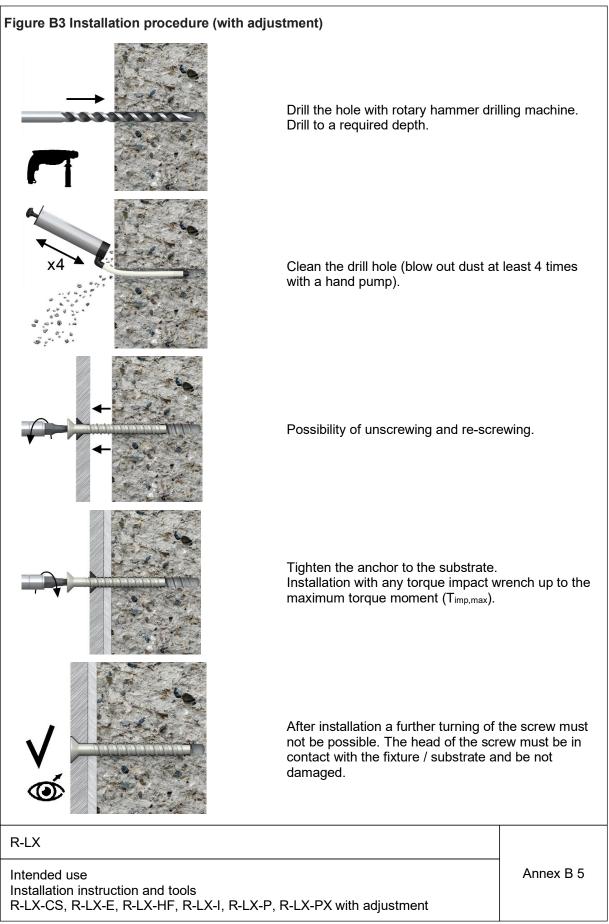


 Table C1: Characteristic resistance in cracked and uncracked concrete C20/25 to C50/60, design method A

Anchor size				R-LX-05	R-L	X-06	R-L	X-08	R-L	X-10	R-L	X-12	R-L	X-14
Nominal embedm	ent depth	h _{nom}	[mm]	43	43	55	50	70	55	85	60	100	75	120
Adjustment														
Total max. thickne adjustment layers		t _{adj}	[mm]	10	-	10	-	10	-	10	-	10	-	10
Max. number of adjustments		n _s	[-]	2	-	2	-	2	-	2	-	2	-	2
Steel failure			r		0		r		0					
Characteristic res	istance	$N_{Rk,s}$	[kN]	25.5	35	5.4	60).4	82	2.4	11	3.0	15	57.0
Partial safety fact	or	γ_{Ms} $^{(1)}$	[-]	1.4	1	.4	1	.4	1	.4	1	.4	1	1.5
Pull-out failure														
Characteristic res uncracked concre		N _{Rk,p}	[kN]	7.0	(2)	12.0	(2)	(2)	(2)	(2)	(2)	(2)	(2)	(2)
Characteristic res cracked concrete		N _{Rk,p}	[kN]	4.5	(2)	7.0	7.0	13.0	8.0	(2)	7.0	(2)	13.0	(2)
Installation safety	factor	γinst	[-]	1.2	1	.0	1	.0	1	.0	1	.0	1	1.0
	concrete C30/37		[-]	1.08	1.	08	1.	08	1.	08	1.	08	1	.08
Increasing concrete factor C40/50	ψ_{c}	[-]	1.15	1.	1.15		1.15		15	1.15		1.15		
	concrete C50/60		[-]	1.19	1.	19	1.	19	1.	19	1.	19	1	.19
Concrete cone fa	ailure and	splittir	ng failu	ire										
Effective embedm	nent depth	h _{ef}	[mm]	32	32	42	36	53	40	65	42	76	54	92
Factor for uncrack concrete	ked	k _{ucr,N}	[-]	11.0	11	.0	11	.0	11	.0	11	.0	1	1.0
Factor for cracked	d concrete	k _{cr,N}	[-]	7.7	7	.7	7	.7	7	.7	7	.7	7	7.7
Installation safety	factor	γinst	[-]	1.2	1	.0	1	.0	1	.0	1	.0	1	1.0
	concrete one failure	S _{cr,N}	[mm]	90	90	126	112	160	120	196	126	228	165	276
spacing	splitting failure	S _{cr,sp}	[mm]	90	90	126	112	160	136	222	126	228	188	312
Characteristic <u>co</u>		C _{cr,N}	[mm]	45	45	63	56	80	60	98	63	114	83	138
	splitting failure	C _{cr,sp}	[mm]	45	45	63	56	80	68	111	63	114	94	156
¹⁾ In the absence	e of other n	ational	regula	tions										
²⁾ Pull-out failure	e is not dec	isive												

R-LX

Performances

Characteristic resistance for tension loads.

Anchor size			R-LX-05	R-L	K-06	R-L	X-08	R-LX	-10	R-L	X-12	12 R-LX-14		
Nominal embedment	h _{nom}	[mm]	43	43	55	50	70	55	85	60	100	75	120	
depth Steel failure without leve	r arm													
Characteristic resistance	V _{Rk,s}	[kN]	12.7	17	.7	30).2	41.	2	57	0	78	3.5	
Factor considering			0.8	0.		0.8		0.8				0.8		
ductility	k ₇	[-]								0.8				
Partial safety factor	γ _{Ms} ⁽¹⁾	[-]	1.5	1.	5	1.	.5	1.5	5	1.	.5	1	.5	
Steel failure with lever a	m													
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	19.0	31	.8	72	2.4	123	.6	203	3.3	32	9.6	
Partial safety factor	γ_{Ms} $^{(1)}$	[-]	1.5	1.	5	1.5		1.5	5	1.	.5	1	.5	
Concrete pry-out failure				-		-						-	-	
Factor	k ₈	[-]	1.0	1.	0	1.	.0	1.0	2.0	1.0	2.0	1.0	2.0	
Installation safety factor	γinst	[-]	1.0	1.	0	1.	.0	1.()	1.	.0	1	.0	
Concrete edge failure			Γ											
Outside diameter on anchor	\mathbf{d}_{nom}	[mm]	5	6	6	8	3	10)	1	2	1	4	
Effective length of anchor under shear loads	l _f	[mm]	43	43	55	50	70	55	85	60	100	75	12	
Installation safety factor	γinst	[-]	1.0	1.	0	1.	.0	1.0)	1.	.0	1	.0	
Minimum member thickness	h _{min}	[mm]	100	100	100	100	110	100	130	110	155	110	19	
Displacements														
Tension load in uncracked	concre	ete C20	/25 to C50	/60		-								
Tension load	Ν	[kN]	2.9	5.	6	11.0		14.9		18.1		23	3.1	
Short term tension displacement	δ _{N0}	[mm]	0.3	0.	3	0.4		0.4		0.5		0	.5	
Long term tension displacement	δ _{N∞}	[mm]	0.85	0.	9	1.0		1.0		1.2		1.	25	
Tension load in cracked co	oncrete	C20/25	5 to C50/60)										
Tension load	Ν	[kN]	2.3	4	4	6	.7	10.	2	12	2.4	17	7.7	
Short term tension displacement	δ _{N0}	[mm]	0.4	0.	4	0.	.5	0.5	5	0.	.6	0	.7	
Long term tension displacement	δ _{N∞}	[mm]	2.0	2	0	2.	.0	2.0)	2.	.0	2	.0	
Shear load in cracked and	uncrac	ked co	ncrete C20)/25 to	0 C50	/60								
Shear load	V	[kN]	5.6	8	1	11	.9	18.	7	27	'.1	35	5.2	
Short term shear displacement	δνο	[mm]	1.4	1	5	2.	.5	2.5	5	2.	.5	2	.5	
Long term shear displacement	δ _{V∞}	[mm]	2.1	2.2	25	3.	75	3.7	5	3.	75	3.	75	
¹⁾ In the absence of other	⁻ nation	al regu	lations											
R-LX														
Performances Characteristic resistance Displacements	e for sł	near lo	ads.								A	nnex	C 2	

Table C2: Characteristic resistance in cracked and uncracked concrete C20/25 to C50/60, design method A

Page 13 of 17 of UK Technical Assessment UKTA-0836-22/6199

Anchor size			R-LX-08	R-LX-10	R-LX-14	
Nominal embedment depth	h _{nom}	[mm]	70	85	120	
Steel failure for tension and shear load	•					
Characteristic resistance	N _{Rk,s,eq}	[kN]	60.4	82.4	157.0	
	$V_{Rk,s,eq}$	[kN]	15.1	27.4	52.3	
Pullout failure						
Characteristic resistance	N _{Rk,p,eq}	[kN]	5.4	13.5	19.2	
Concrete cone failure						
Effective embedment depth	h _{ef}	[mm]	53	65	92	
Characteristic edge distance	C _{cr,N}	[mm]	1.5 h _{ef}			
Characteristic spacing	S _{cr,N}	[mm]	3 h _{ef}			
Installation safety factor	γinst	[-]		1.0		
Concrete pry-out failure						
Factor	k ₈	[-]	1.0	2.0	2.0	
Concrete edge failure						
Outside diameter on anchor	d _{nom}	[mm]	8	10	14	
Effective length of anchor under shear loads	lf	[mm]	70	85	120	

R-LX

Performances

Characteristic values for seismic performance category C1

Annex C 3

ANNEX C : Characteristic	performance values	(continued)
---------------------------------	--------------------	-------------

Anchor size	R-LX-08	R-LX-10	R-LX-14					
Nominal embedment depth	h _{nom}	[mm]	70	85	120			
Steel failure for tension and she	ar load	•			•			
Characteristic registeres	N _{Rk,s,eq}	[kN]	60.4	82.4	157.0			
Characteristic resistance	$V_{Rk,s,eq}$	[kN]	9.9	20.6	35.1			
Pullout failure								
Characteristic resistance	N _{Rk,p,eq}	[kN]	1.57	4.91	14.87			
Concrete cone failure								
Effective embedment depth	h _{ef}	[mm]	53	65	92			
Characteristic edge distance	Ccr,N	[mm]	1.5 h _{ef}					
Characteristic spacing	Scr,N	[mm]	3 h _{ef}					
Installation factor	γinst	[-]	1.0					
Concrete pry-out failure								
Factor	k ₈	[-]	1.0	2.0	2.0			
Concrete edge failure								
Outside diameter on anchor	d_{nom}	[mm]	8	10	14			
Effective length of anchor under shear loads	lf	[mm]	70	85	120			
Displacements								
Displacements under tension load								
Displacement DLS	$\delta_{\text{N,eq}}$	[mm]	0.10	0.20	0.63			
Displacement ULS	$\delta_{N,eq}$	[mm]	0.50	0.73	3.94			
Displacements under shear load								
Displacement DLS	$\delta_{V,eq}$	[mm]	2.00	3.44	4.22			
Displacement ULS	δv,eq	[mm]	3.04	5.04	7.15			

R-LX

Performances Characteristic values for seismic performance category C2 Annex C 4

Table C5: Characteristic resistance under fire exposure in cracked and uncracked concrete

 C20/25 to C50/60

Anchor size			R-LX-05 R-LX-06		R-LX-08		R-LX-10		R-LX-12		R-LX-14			
Nominal emb	edment depth	h _{nom}	[mm]	43	43	55	50	70	55	85	60	100	75	120
Steel failure for tension and shear load FRk,s,fi = NRk,s,fi = VRk,s,fi														
Characteristic resistance	R30	$F_{Rk,s,fi}$	[kN]	0.20	0.28	0.28	0.75	0.75	1.57	1.57	2.26	2.26	3.08	3.08
	R60	$F_{Rk,s,fi}$	[kN]	0.18	0.25	0.25	0.65	0.65	1.18	1.18	1.70	1.70	2.31	2.31
	R90	$F_{Rk,s,fi}$	[kN]	0.14	0.20	0.20	0.50	0.50	1.02	1.02	1.47	1.47	2.00	2.00
	R120	F _{Rk,s,fi}	[kN]	0.10	0.14	0.14	0.40	0.40	0.79	0.79	1.13	1.13	1.54	1.54
	R30	M ⁰ _{Rk,s,fi}	[Nm]	0.15	0.25	0.25	0.90	0.90	2.36	2.36	4.07	4.07	6.47	6.47
	R60	M ⁰ _{Rk,s,fi}	[Nm]	0.13	0.23	0.23	0.78	0.78	1.77	1.77	3.05	3.05	4.85	4.85
	R90	M ⁰ _{Rk,s,fi}	[Nm]	0.10	0.18	0.18	0.60	0.60	1.53	1.53	2.65	2.65	4.20	4.20
	R120	M ⁰ _{Rk,s,fi}	[Nm]	0.07	0.13	0.13	0.48	0.48	1.18	1.18	2.04	2.04	3.23	3.23
Pull-out failu	Pull-out failure													
Characteristic	R30	N _{Rk,p,fi}	[kN]	1.13	1.38	1.75	1.88	3.25	2.00	4.75	1.75	6.50	3.25	8.50
	R60	N _{Rk,p,fi}	[kN]	1.13	1.38	1.75	1.88	3.25	2.00	4.75	1.75	6.50	3.25	8.50
resistance	R90	N _{Rk,p,fi}	[kN]	1.13	1.38	1.75	1.88	3.25	2.00	4.75	1.75	6.50	3.25	8.50
	R120	N _{Rk,p,fi}	[kN]	0.90	1.10	1.40	1.50	2.60	1.60	3.80	1.40	5.20	2.60	6.80
Concrete co	ne failure											1		
Characteristic resistance	R30	N _{Rk,c,fi}	[kN]	0.89	0.89	2.06	1.50	3.68	1.82	6.13	2.06	9.06	4.04	14.61
	R60	N _{Rk,c,fi}	[kN]	0.89	0.89	2.06	1.50	3.68	1.82	6.13	2.06	9.06	4.04	14.61
	R90	N _{Rk,c,fi}	[kN]	0.89	0.89	2.06	1.50	3.68	1.82	6.13	2.06	9.06	4.04	14.61
	R120	N _{Rk,c,fi}	[kN]	0.71	0.71	1.65	1.20	2.94	1.46	4.91	1.65	7.25	3.23	11.69
Edge distand	ce		1											
R30 to R120		C _{cr,fi}	[mm] 2·h _{ef}											
In case of fire	attack from mo	ore than o	one side	e, the mini	mum	edge	dista	ince s	hall b	e ≥ 3	00 mr	n.		
Anchor space	ing													
R30 to R120		S _{cr,fi}	[mm]	4.h _{ef}										
Concrete pry	/-out failure				-		-				-			
R30 to R120		k	[-]	1.0	1.0	1.0	1.0	1.0	1.0	2.0	1.0	2.0	1.0	2.0
R-LX														
erformances Characteristic resistance under fire exposure							4	Anne>	к С 5					

British Board of Agrément, 1st Floor Building 3 Hatters Lane Croxley Park Watford WD18 8YG