

Designated according to The Construction Products (Amendment etc.) (EU Exit) Regulations 2020

UK Technical Assessment	UKTA-0836-22/6102 of 12/07/2022
Technical Assessment Body issuing the UK Technical Assessment:	British Board of Agrément
Trade name of the construction product:	RAWL RP-30 / RAWL R-KF2
Product family to which the construction product belongs:	Area Code 33, Bonded anchor with anchor rod made of galvanized steel or stainless steel for use in non-cracked concrete
Manufacturer:	RAWLPLUG S.A. ul. Kwidzyńska 6 51-416 Wrocław, Poland
Manufacturing plant(s):	Manufacturing Plant No. 3
This UK Technical Assessment contains:	17 pages including 3 annexes which form an integral part of this assessment
This UK Technical Assessment is issued in accordance with The Construction Products (Amendment etc.) (EU Exit) Regulations 2020 on the basis of:	UKAD 330499-00-0601 Bonded Fasteners for use in concrete

Communication of this UK Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of the issuing UK Technical Assessment Body. Any partial reproduction has to be identified as such.

1 Technical description of the product

The RAWL RP-30 / RAWL R-KF2 is a bonded anchor (injection type) consisting of an injection mortar cartridge using an applicator gun equipped with a special mixing nozzle and threaded anchor rod of the sizes M8 to M30 manufactured from:

- galvanized carbon steel
- stainless steel
- high corrosion resistant stainless steel with hexagon nut and washer.

The threaded rod is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The threaded rod is anchored by the bond between rod. mortar and concrete.

The threaded rods are available for all diameters with three type of tip end: one side 45° chamfer, two sides 45° chamfer or flat edged. The threaded rods are either delivered with the mortar cartridges or commercial standard threaded rods purchased separately. The mortar cartridges are available in different sizes and types.

An illustration and the description of the products are given in Annexes A.

2 Specification of the intended use(s) in accordance with the applicable UK Assessment Document (hereinafter UKAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The performances given in this UK Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristic is detailed in the Annex C.

3.2 Safety in case of fire (BWR 2)

Characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined

3.3 Health, hygiene and the environment (BWR 3)

Regarding dangerous substances, there may be additional legislative requirements falling outside of the scope of this document. These requirements must be complied with as appropriate.

3.4 Safety and accessibility in use (BWR 4)

For Basic Requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability (BWR 1).

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

No performance assessed.

4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied

4.1 System of assessment and verification of constancy of performance

According to UKAD No. 330499-00-0601 and Annex V of the Construction Products Regulation (Regulation (EU) 305/2011 as brought into UK law and amended, the system of assessment and verification of constancy of performance (AVCP) 1 applies.

Product	Intended use	Level or class	System
	For fixing and/or supporting to concrete structural elements (which contributes to the stability of the works) or heavy units	-	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable UKAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with the British Board of Agrément and made available to the UK Approved Bodies involved in the conformity attestation process.

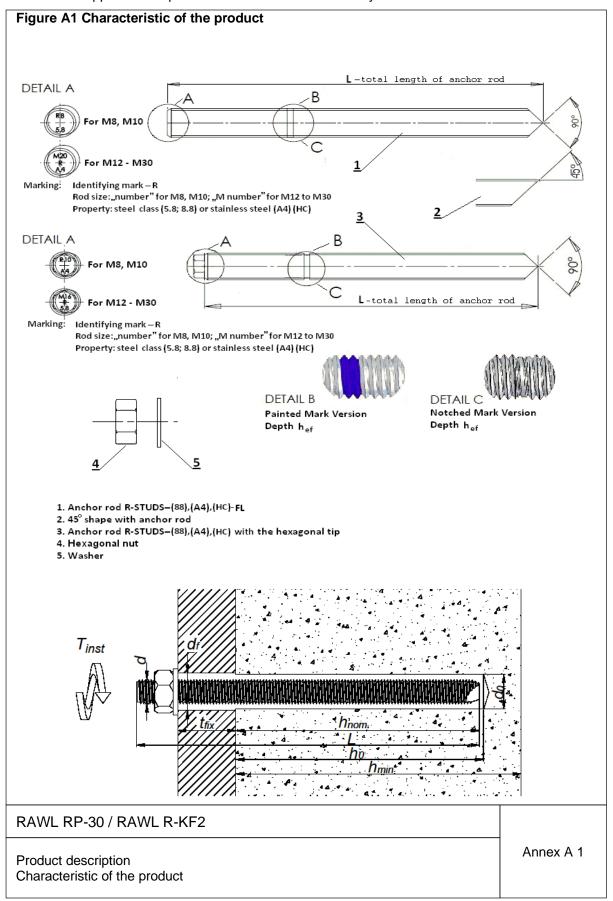
5.1 UKCA marking for the product/ system must contain the following information:

- Identification number of the Approved Body
- Name/address of the manufacturer of the product/ system
- Marking with intention of clarification of intended use
- Date of marking
- Number of certificate of constancy of performance
- UKTA number.

On behalf of the British Board of Agrément

Date of Issue: 12/07/2022

Hardy Giesler
Chief Executive Officer



British Board of Agrément, 1st Floor Building 3,

1st Floor Building 3, Hatters Lane, Croxley Park Watford WD18 8YG

ANNEX A: RAWL RP-30 / RAWL R-KF2 - product specification

This annex applies to the product described in the main body of the UK Technical Assessment.

ANNEX A: RAWL RP-30 / RAWL R-KF2 - product specification (continued)

Table A1: Threaded rods

		Designation	
Part	Steel, zinc plated	Stainless steel	High corrosion resistance stainless steel (HCR)
Threaded rod	Steel, property class 5.8 to 12.9, acc. to EN ISO 898-1 electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684	Material 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506
Hexagon nut	Steel, property class 5 to 12, acc. to EN ISO 898-2; electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684	Material 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506
Washer	Steel, acc. to EN ISO 7089; electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684	Material 1.4401, 1.4404, 1.4571 acc. to EN 10088	Material 1.4529, 1.4565, 1.4547 acc. to EN 10088

Commercial standard threaded rods (in the case of rods made of galvanized steel – standard rods with property class \leq 8.8 only), with:

- material and mechanical properties according to Table A1,
- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN 10204:2017; the documents shall be stored,
- marking of the threaded rod with the embedment depth.

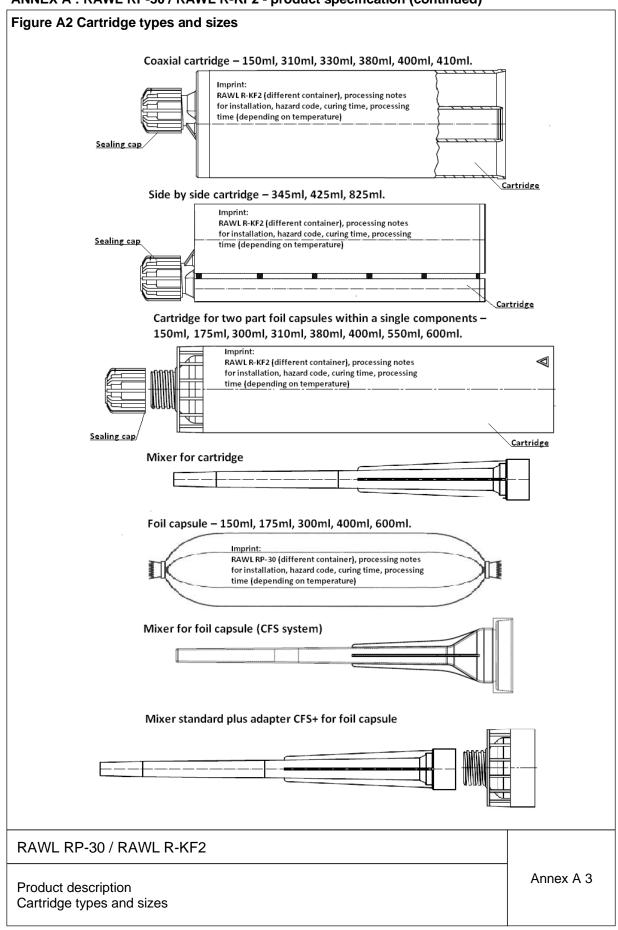

Note: Commercial standard threaded rods made of galvanized steel with property class above 8.8 are not permitted in some Member States.

Table A2: Injection mortar

Product	Composition
RAWL RP-30 / RAWL R-KF2	Bonding agent: polyester based resin Hardener: dibenzoyl peroxide Additive: quartz sand (filler)

RAWL RP-30 / RAWL R-KF2	
Product description Materials	Annex A 2

ANNEX A: RAWL RP-30 / RAWL R-KF2 - product specification (continued)

ANNEX B: RAWL RP-30 / RAWL R-KF2 - intended use

Specification of intended use

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

Static and quasi-static loads: sizes from M8 to M30.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 at minimum to C50/60 at maximum according to EN 206.
- Non cracked concrete: sizes from M8 to M30.

Temperature range:

The anchors may be used in the following temperature range:

- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).

Use conditions (environmental conditions):

- Elements manufactured from galvanized steel may be used in structures subject to dry internal conditions.
- Elements manufactured from stainless steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).
- Elements manufactured from high corrosion resistant stainless steel may be used in structures subject to dry internal conditions and also in concrete subject to external atmospheric exposure or exposure in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used).

Installation:

- Dry or wet concrete (use category 1): sizes from M8 to M30.
- Flooded holes with the exception of seawater (use category 2): sizes from M8 to M30.
- The anchors are suitable for rotary hammer drilled holes: sizes from M8 to M30.

Design methods:

EOTA Technical Report TR029 (September 2010) or CEN/TS 1992-4:2009.

RAWL RP-30 / RAWL R-KF2		
Intended use Specification	Annex B 1	

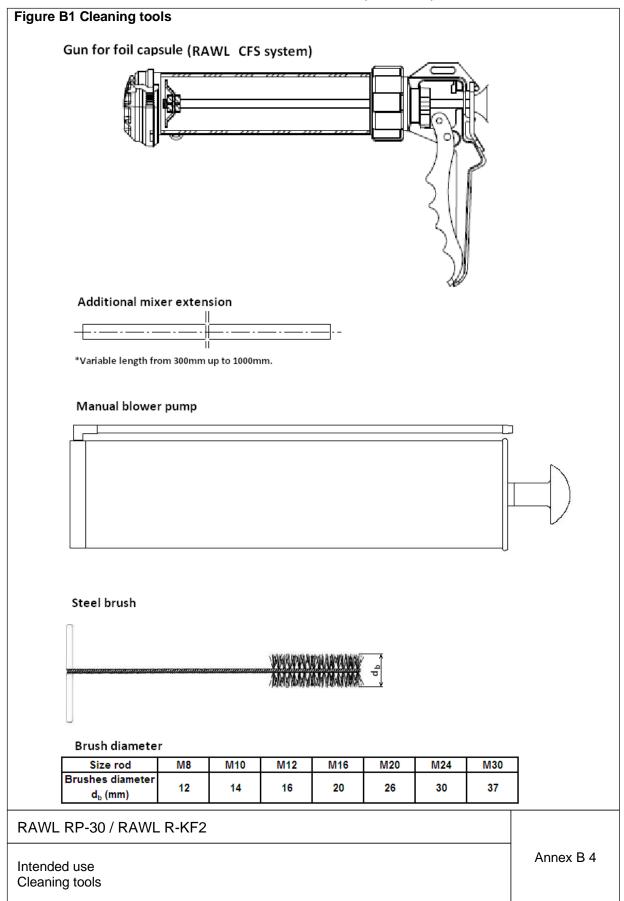
ANNEX B: RAWL RP-30 / RAWL R-KF2 - intended use (continued)

Table B1: Installation data

Size		M8	M10	M12	M16	M20	M24	M30
Diameter of anchor rod	d [mm]	8	10	12	16	20	24	30
Nominal drilling diameter	d₀ [mm]	10	12	14	18	24	28	35
Maximum diameter hole in the fixture	d _f [mm]	9	12	14	18	22	26	32
Effective embedment depth h _{ef =} h _{nom}	min [mm]	60	70	80	100	120	140	165
	max [mm]	100	120	145	190	240	290	360
Depth of the drilling hole	h ₀ [mm]	h _{ef} + 5 mm						
Minimum thickness of the concrete member	h _{min} [mm]	h_{ef} + 30 mm; \geq 100 mm h_{ef} + 2 · d ₀		lo				
Torque moment	T _{inst} [Nm]	10	20	40	80	120	180	300
Minimum spacing	s _{min} [mm]	0.5 · h _{ef} ≥ 40 mm						
Minimum edge distance	c _{min} [mm]	0.5 · h _{ef} ≥ 40 mm						

RAWL RP-30 / RAWL R-KF2	
Intended use Installation Data	Annex B 2

ANNEX B: RAWL RP-30 / RAWL R-KF2 - intended use (continued)


Table B2: Processing time and minimum curing time

Mortar temperature (°C)	Concrete temperature (°C)	Processing (open) time (minutes)	Minimum curing time ¹⁾ (hours/minutes)
5	-5	60	6 h
5	0	40	3 h
5	5	20	2 h
10	10	12	80 min.
15	15	8	60 min.
20	20	5	45 min.
25	30	2	20 min.

¹⁾ Curing time shall be doubled for the wet concrete.

RAWL RP-30 / RAWL R-KF2	
Intended use Processing time and curing time	Annex B 3

ANNEX B: RAWL RP-30 / RAWL R-KF2 - intended use (continued)

ANNEX B: RAWL RP-30 / RAWL R-KF2 - intended use (continued)

Figure B2 Installation instructions

	Drill a hole to the required diameter and depth using a rotary hammer drilling machine.
x4	4x times blowing, starting from the bottom of the drilled hole, using the hand pump.
	4x times brushing (at least) using the specified steel brush.
x4	4x times blowing, starting from the bottom of the drilled hole, using the hand pump.
70%	Insert the mixing nozzle to the far end of the hole and inject the mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its' depth.
	Immediately insert the rod, slowly and with a slight twisting motion. Remove excess of mortar around the hole before it sets.
	Leave the fixing undisturbed until the cure time elapses.
	Attach the fixture and tighten the nut to the required torque.

RAWL RP-30 / RAWL R-KF2	
Intended use Installation instructions	Annex B 5

ANNEX C: Characteristic values for loads and displacements

Size				M8	M10	M12	M16	M20	M24	M30
Steel failure				IVIO	IVIIO	14112	IVITO	IVIZU	IVIZ	IVIOU
	Larod	o F 9								
Steel failure with threaded rod Characteristic resistance	grau		[kN]	18	29	42	78	122	176	280
		N _{Rk,s}		10	29	42		122	176	200
Partial safety factor Steel failure with threaded rod	l arad	γ _{Ms} ¹⁾	[-]				1.50			
Characteristic resistance	grau		[kN]	29	46	67	126	196	282	449
Partial safety factor		N _{Rk,s}		29	40	67	1.50	190	202	449
Steel failure with threaded rod	l arod	γ _{Ms} 1)	[-]				1.50			
Characteristic resistance	grau	N _{Rk,s}	[kN]	37	58	84	157	245	353	561
Partial safety factor			[-]	31	50	04	1.40	243	333	301
Steel failure with threaded rod	l arod	γ _{Ms} ¹⁾	[-]				1.40			
Characteristic resistance	grau		[kN]	44	70	101	188	294	424	673
Partial safety factor		N _{Rk,s} γ _{Ms} 1)	[-]	44	70	101	1.40	294	424	0/3
Steel failure with stainless ste	al thr						1.40			
Characteristic resistance	erme	N _{Rk,s}	/U [kN]	26	41	59	110	171	247	393
Partial safety factor		γ _{Ms} 1)	[-]	20	41	39	1.87	171	241	393
Steel failure with stainless ste	al thr						1.07			
Characteristic resistance	erune	N _{Rk,s}	[kN]	29	46	67	126	196	282	449
		γ _{Ms} 1)	[-]	29	40	67	1.60	190	202	449
Partial safety factor Steel failure with high corrosic	n thr						1.00			
Characteristic resistance	יוו נווונ		[kN]	26	41	59	110	171	247	393
Partial safety factor		N _{Rk,s} γ _{Ms} 1)	[-]	20	41	59	1.87	171	241	393
·			[-]				1.07			
Combined pull-out and cond	crete	cone failure								
Characteristic bond resistance	e in u	ncracked conc	rete C20/	25						
Characteristic bond resistance Temperature range I: 40°C/24		ncracked conc	rete C20/ [N/mm²]	²⁵ 9.5	10	9.5	9	8.5	7	5
	4ºC		1	9.5	10	9.5 8.5	9 8	8.5 7.5	7 6	5 4.5
Temperature range I: 40°C/24 Temperature range II: 80°C/50	4ºC	τ _{Rk,ucr}	[N/mm ²]	9.5 8.5		8.5	8		6	4.5
Temperature range I: $40^{\circ}\text{C}/2^{\circ}$ Temperature range II: $80^{\circ}\text{C}/50^{\circ}$ Increasing factor for $\tau_{\text{Rk,ucr}}$	4ºC	T _{Rk} ,ucr	[N/mm ²]	9.5		8.5 1.0	8		6	4.5
Temperature range I: 40°C/24 Temperature range II: 80°C/50	4ºC	τ _{Rk,ucr}	[N/mm ²] [N/mm ²] C30/37 C40/50	9.5 8.5		8.5 1.0 1.	8 08 15		6	4.5 1.0
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for u	4°C 0°C	$ au_{ m Rk,ucr}$ $ au_{ m Rk,ucr}$	[N/mm ²] [N/mm ²] C30/37	9.5 8.5		8.5 1.0 1.	8		6	4.5 1.0
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for ucategory 1 Installation safety factors for u	4°C 0°C	T _{Rk} ,ucr	[N/mm²] [N/mm²] C30/37 C40/50 C50/60 [-]	9.5 8.5 1.11	9	8.5 1.0 1.	8 08 15 19	7.5	6 1 1	4.5 .0 .0
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for ucategory 1 Installation safety factors for ucategory 2	4°C 0°C	$ au_{ m Rk,ucr}$ $ au_{ m Rk,ucr}$	[N/mm ²] [N/mm ²] C30/37 C40/50 C50/60	9.5 8.5 1.11	1.2	8.5 1.0 1. 1.	8 08 15 19 1.2	7.5 1.2	6	4.5 1.0 1.0 1.4
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for ucategory 1	4°C 0°C	$ au_{ m Rk,ucr}$ $ au_{ m Rk,ucr}$	[N/mm²] [N/mm²] C30/37 C40/50 C50/60 [-]	9.5 8.5 1.11	1.2	8.5 1.0 1. 1.	8 08 15 19 1.2	7.5 1.2	6	4.5 1.0 1.0 1.4
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for u category 1 Installation safety factors for u category 2 Splitting failure	4°C 0°C	$ au_{ m Rk,ucr}$ $ au_{ m Rk,ucr}$	[N/mm²] [N/mm²] C30/37 C40/50 C50/60 [-]	9.5 8.5 1.11	1.2	8.5 1.0 1. 1.	8 08 15 19 1.2	7.5 1.2	6	4.5 1.0 1.0 1.4
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for ucategory 1 Installation safety factors for ucategory 2 Splitting failure	4°C 0°C	$\tau_{Rk,ucr}$ $\tau_{Rk,ucr}$ ψ_c $\gamma_2^{(2)} = \gamma_{inst}^{(3)}$	[N/mm²] [N/mm²] C30/37 C40/50 C50/60 [-]	9.5 8.5 1.11 1.2 1.4	1.2	8.5 1.0 1. 1. 1.2 1.4	8 15 19 1.2 1.4 100 190	1.2 1.4	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.5 1.0 1.0 1.4 1.4
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for ucategory 1 Installation safety factors for ucategory 2 Splitting failure	4°C 0°C	$ au_{Rk,ucr}$ $ au_{Rk,ucr}$ $ au_{c}$	[N/mm²] [N/mm²] C30/37 C40/50 C50/60 [-] [-] [mm] [mm]	9.5 8.5 1.11 1.2 1.4	9 1.2 1.4	8.5 1.0 1. 1. 1.2 1.4	8 15 19 1.2 1.4 100 190	1.2 1.4	6 1 1 1.4 1.4	4.5 1.0 1.0 1.4 1.4
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for ucategory 1 Installation safety factors for ucategory 2 Splitting failure	4°C 0°C	$ au_{Rk,ucr}$ $ au_{Rk,ucr}$ $ au_{Cr,N} = \mathbf{C}_{cr,Np}$	[N/mm²] [N/mm²] C30/37 C40/50 C50/60 [-] [-] [mm] [mm]	9.5 8.5 1.11 1.2 1.4	1.2 1.4 70 120	8.5 1.0 1. 1. 1.2 1.4 80 145	$ \begin{array}{c c} 8 \\ 08 \\ 15 \\ 19 \\ 1.2 \\ 1.4 \\ 100 \\ 190 \\ 2c_{CA/Np} = \frac{s_{CA/Np}}{2} \\ \end{array} $	1.2 1.4	6 1 1 1.4 1.4 1.4 290	4.5 1.0 1.0 1.4 1.4 165 360
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for ucategory 1 Installation safety factors for ucategory 2 Splitting failure Effective anchorage depth hef	4°C 0°C	$ au_{Rk,ucr}$ $ au_{Rk,ucr}$ $ au_{C}$ $ au_$	[N/mm²] [N/mm²] C30/37 C40/50 C50/60 [-] [-] [mm] [mm]	9.5 8.5 1.11 1.2 1.4	9 1.2 1.4	8.5 1.0 1. 1. 1.2 1.4	$ \begin{array}{c c} 8 \\ 08 \\ 15 \\ 19 \\ 1.2 \\ 1.4 \\ 100 \\ 190 \\ 2c_{CA/Np} = \frac{s_{CA/Np}}{2} \\ \end{array} $	1.2 1.4	6 1 1 1.4 1.4	4.5 1.0 1.0 1.4 1.4 165 360
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for ucategory 1 Installation safety factors for ucategory 2	4°C 0°C	$ au_{Rk,ucr}$ $ au_{Rk,ucr}$ $ au_{Cr,N} = \mathbf{C}_{Cr,Np}$ $ au_{Cr,Np}$	[N/mm²] [N/mm²] C30/37 C40/50 C50/60 [-] [-] [mm] [mm] [mm]	9.5 8.5 1.11 1.2 1.4	1.2 1.4 70 120	8.5 1.0 1. 1.2 1.4 80 145	$ \begin{array}{c c} 8 \\ 08 \\ 15 \\ 19 \\ 1.2 \\ 1.4 \\ 100 \\ 190 \\ 2c_{CA/Np} = \frac{s_{CA/Np}}{2} \\ \end{array} $	1.2 1.4	6 1 1 1.4 1.4 1.4 290	4.5 1.0 1.0 1.4 1.4 165 360
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for ucategory 1 Installation safety factors for ucategory 2 Splitting failure Effective anchorage depth hef	4°C 0°C use	$ au_{Rk,ucr}$ $ au_{Rk,ucr}$ $ au_{C}$ $ au_$	[N/mm²] [N/mm²] C30/37 C40/50 C50/60 [-] [-] [mm] [mm]	9.5 8.5 1.11 1.2 1.4	1.2 1.4 70 120	8.5 1.0 1. 1. 1.2 1.4 80 145	$ \begin{array}{c c} 8 \\ 08 \\ 15 \\ 19 \\ 1.2 \\ 1.4 \\ 100 \\ 190 \\ 2c_{CA/Np} = \frac{s_{CA/Np}}{2} \\ \end{array} $	1.2 1.4	6 1 1 1.4 1.4 1.4 290	4.5 1.0 1.0 1.4 1.4 165 360
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for ucategory 1 Installation safety factors for ucategory 2 Splitting failure Effective anchorage depth hef	4°C 0°C use	$ au_{Rk,ucr}$ $ au_{Rk,ucr}$ $ au_{Cr,N} = \mathbf{C}_{Cr,Np}$ $ au_{Cr,Np}$	[N/mm²] [N/mm²] C30/37 C40/50 C50/60 [-] [-] [mm] [mm] [mm]	9.5 8.5 1.11 1.2 1.4	1.2 1.4 70 120	8.5 1.0 1. 1.2 1.4 80 145	8 08 15 19 1.2 1.4 100 190 $c_{cr, hp} = \frac{s_{cr, hp}}{2}$	1.2 1.4	6 1 1 1.4 1.4 1.4 290	4.5 1.0 1.0 1.4 1.4 165 360
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for ucategory 1 Installation safety factors for ucategory 2 Splitting failure Effective anchorage depth hef	4°C 0°C use c c h _{min} (c _{cr.s} int	$ au_{Rk,ucr}$ $ au_{Rk,ucr}$ $ au_{C}$ $ au_$	[N/mm²] [N/mm²] C30/37 C40/50 C50/60 [-] [-] [mm] [mm] [mm]	9.5 8.5 1.11 1.2 1.4	1.2 1.4 70 120	8.5 1.0 1. 1.2 1.4 80 145	8 08 15 19 1.2 1.4 100 190 Ser No = \$\frac{s_{cr,N_0}}{2}\$ hef	1.2 1.4 120 240	6 1 1 1.4 1.4 1.4 290	4.5 1.0 1.0 1.4 1.4 165 360
Temperature range I: 40°C/24 Temperature range II: 80°C/50 Increasing factor for \(\tau_{Rk,ucr}\) in non-cracked concrete Installation safety factors for ucategory 1 Installation safety factors for ucategory 2 Splitting failure Effective anchorage depth hef	4°C 0°C use	$ au_{Rk,ucr}$ $ au_{Rk,ucr}$ $ au_{c}$ $ au_{cr,N} = C_{cr,Np}$ $ au_{cr,Np}$ $ au$	[N/mm²] [N/mm²] C30/37 C40/50 C50/60 [-] [-] [mm] [mm] [mm] [mm]	9.5 8.5 1.11 1.2 1.4	1.2 1.4 70 120	8.5 1.0 1. 1.2 1.4 80 145 2.0	8 08 15 19 1.2 1.4 100 190 $c_{c,h_0} = \frac{s_{cr,h_0}}{2}$	1.2 1.4 120 240	6 1 1 1.4 1.4 1.4 290	4.5 1.0 1.0 1.4 1.4 165 360

- in the absence of national regulations
 factor according to EOTA Technical Report TR 029
 factor according to CEN/TS 1992-4:2009
 h concrete member thickness

RAWL RP-30 / RAWL R-KF2	
Performances Characteristic resistance under tension loads in uncracked concrete	Annex C 1

ANNEX C: Characteristic values for loads and displacements (continued)

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure with threaded rod g		1							
Characteristic resistance	$V_{Rk,s}$	[kN]	9	14	21	39	61	88	140
Partial safety factor	γMs	[-]			•	1.25	•		
Steel failure with threaded rod g	rade 8.8								
Characteristic resistance	$V_{Rk.s}$	[kN]	15	23	34	63	98	141	224
Partial safety factor	γMs	[-]				1.25			
Steel failure with threaded rod g	rade 10.9								
Characteristic resistance	V _{Rk.s}	[kN]	18	29	42	78	122	176	280
Partial safety factor	γMs	[-]				1.50			
Steel failure with threaded rod g	rade 12.9								
Characteristic resistance	V _{Rk.s}	[kN]	22	35	51	94	147	212	337
Partial safety factor	γMs	[-]				1.50			
Steel failure with stainless steel	threaded	rod grad	e A4-7	70					
Characteristic resistance	$V_{Rk.s}$	[kN]	13	20	29	55	86	124	196
Partial safety factor	γMs	[-]				1.56			
Steel failure with stainless steel	threaded	rod grad	e A4-8	30					
Characteristic resistance	V _{Rk.s}	[kN]	15	23	34	63	98	141	224
Partial safety factor γ_{Ms} [-] 1.33							· · · · · · · · · · · · · · · · · · ·		
Steel failure with high corrosion stainless steel threaded rod grade 70									
Characteristic resistance	$V_{Rk.s}$	[kN]	13	20	29	55	86	124	196
	1								

[-]

 $\gamma \mathsf{Ms}$

RAWL RP-30 / RAWL R-KF2	
Performances Characteristic resistance under shear loads in uncracked concrete	Annex C 2

Partial safety factor

1.56

ANNEX C: Characteristic values for loads and displacements (continued)

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure with threaded re	od grade 5.	8							
Characteristic resistance	M^0 Rk,s	[Nm]	19	37	65	166	324	561	1124
Partial safety factor	γMs	[-]				1.25			
Steel failure with threaded re	od grade 8.	8							
Characteristic resistance	M ⁰ Rk,s	[Nm]	30	60	105	266	519	898	1799
Partial safety factor	γMs	[-]				1.25			
Steel failure with threaded re	od grade 10).9							
Characteristic resistance	M ⁰ Rk,s	[Nm]	37	75	131	333	649	1123	2249
Partial safety factor	γMs	[-]				1.50			
Steel failure with threaded re	od grade 12	2.9							
Characteristic resistance	M^0 Rk,s	[Nm]	45	90	157	400	779	1347	2699
Partial safety factor	γMs	[-]				1.50			
Steel failure with stainless s	teel thread	ed rod	grade	A4-70					
Characteristic resistance	M ⁰ Rk,s	[Nm]	26	52	92	233	454	786	1574
Partial safety factor	γMs	[-]				1.56			
Steel failure with stainless s	teel thread	ed rod	grade	A4-80					
Characteristic resistance	M^0 Rk,s	[Nm]	30	60	105	266	519	898	1799
Partial safety factor γ _{Ms} [-] 1.33									
Steel failure with high corro	sion stainle	ess stee	el thre	aded r	od grad	le 70			
Characteristic resistance	M ⁰ Rk,s	[Nm]	26	52	92	233	454	786	1574
Partial safety factor	γMs	[-]				1.56			

RAWL RP-30 / RAWL R-KF2	
Performances Characteristic resistance under shear loads	Annex C 3

ANNEX C: Characteristic values for loads and displacements (continued)

Table C4: Characteristic values for shear loads - pry out and concrete edge failure

Size				M10	M12	M16	M20	M24	M30
Effective anchorage depth b	min	[mm]	60	70	80	100	120	140	165
Effective anchorage depth hef	max	[mm]	100	120	145	190	240	290	360
Pry out failure									
Factor acc. to equation (5.7) of TR 029 or acc. to equation (27) of CEN/TS 1992-4:2009	$k^{1)} = k_3^{2)}$	[-]	2	2	2	2	2	2	2
Partial safety factor 3)	γмр	[-]	1.5						
Concrete edge failure: see clause 5.2.3.4 of Technical Report TR 029									
Partial safety factor 3)	γмс	[-]				1.5	5		

¹⁾ factor according to EOTA Technical Report TR 029

Table C5: Displacement under tension loads - uncracked concrete

Size				M10	M12	M16	M20	M24	M30
Characteristic displacement in non-cracked concrete C20/25 to C50/60 under tension loads									loads
Admissible service load 1)	F	[kN]	7.2	11.1	13.9	22.7	31.6	31.2	33.9
D'anda a a a a	δνο	[mm]	0.20	0.20	0.25	0.25	0.35	0.40	0.40
Displacement	δn∞	[mm]	0.80	0.80	0.80	0.80	0.80	0.80	0.80

 $F = F_{Rk} / \gamma_F \cdot \gamma_{Mc}$, with $\gamma_F = 1.4$

These values are suitable for each temperature range and categories specified in Annex B1

Table C6: Displacement under shear loads

Size			M8	M10	M12	M16	M20	M24	M30		
Characteristic displacement under shear loads											
Admissible service load 1)	F	[kN]	3.7	5.8	8.4	15.7	24.5	35.3	55.6		
Dianlacement	δνο	[mm]	2.5	2.5	2.5	2.5	2.5	2.5	2.5		
Displacement	δν∞	[mm]	3.7	3.7	3.7	3.7	3.7	3.7	3.7		

¹⁾ $F = F_{Rk} / \gamma_F \cdot \gamma_{Mc}$, with $\gamma_F = 1.4$

These values are suitable for each temperature range and categories specified in Annex B1

RAWL RP-30 / RAWL R-KF2	
Performances Characteristic resistance under shear loads. Displacement under service loads: tension and shear loads	Annex C 4

²⁾ factor according to CEN/TS 1992-4:2009

³⁾ in the absence of national regulation

British Board of Agrément, 1st Floor Building 3, Hatters Lane, Croxley Park Watford **WD18 8YG**