

INSTYTUT TECHNIKI BUDOWLANEJ

PL 00-611 WARSZAWA

ul. Filtrowa 1

tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86

www.itb.pl

European Technical Assessment

ETA-21/0244 of 11/03/2021

General Part

Technical Assessment Body issuing the European Technical Assessment

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

Instytut Techniki Budowlanej

R-KEX-II

Bonded fasteners with threaded rod, rod with inner thread and rebar for use in concrete

RAWLPLUG S.A. ul. Kwidzyńska 6 51-416 Wrocław Poland

Manufacturing Plant no. 3

37 pages including 3 Annexes which form an integral part of this Assessment

European Assessment Document EAD 330499-01-0601 "Bonded fasteners for use in concrete"

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The R-KEX-II are bonded anchors (injection type) consisting of a injection mortar cartridge using an applicator gun equipped with a special mixing nozzle and steel element. The steel element consists of:

- threaded anchor rod sizes M8 to M30 made of:
 - galvanized carbon steel,
 - carbon steel with zinc flake coating,
 - stainless steel,
 - high corrosion resistant stainless steel.

with hexagon nut and washer,

- anchor rod with inner thread sizes M6/Ø10 to M16/Ø24 made of:
 - galvanized carbon steel,
 - stainless steel,
 - high corrosion resistant stainless steel,
- rebar sizes Ø8 to Ø32.

The steel element is placed into a drilled hole previously injected (using an applicator gun) with a mortar with a slow and slight twisting motion. The rod or rebar is anchored by the bond between steel element and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Section 3 are only valid if the anchors are used in compliance with the specifications and conditions given in Annex B.

The performances given in this European Technical Assessment are based on an assumed working life of the anchor of 50 and/or 100 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Performance of the product

3.1.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to static and quasi static loading, displacements	See Annex C1 to C13
Characteristic resistance to seismic performance category C1, displacements	See Annex C14 to C16

3.1.2 Hygiene, health and the environment (BWR 3)

No performance assessed.

3.2 Methods used for the assessment

The assessment of the product has been made in accordance with the EAD 330499-01-0601 "Bonded fasteners for use in concrete".

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 96/582/EC of the European Commission the system 1 of assessment and verification of constancy of performance applies (see Annex V to regulation (EU) No 305/2011).

Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document (EAD)

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Instytut Techniki Budowlanej.

For type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.

Issued in Warsaw on 11/03/2021 by Instytut Techniki Budowlanej

Anna Panek, MSc Deputy Director of ITB

Threaded anchor rods L-total length of anchor rod DETAIL A -B For M12 - M30 Marking: Identifying mark – R Size rod: 'number' for M8, M10; M'number' for M12 to M30 DETAIL A For M8, M10 L-total length of anchor rod Marking: Identifying mark – R Size rod: 'number' for M8, M10; M'number' for M12 to M30 DETAIL B DETAIL C Painted Mark Version Depth h_{mid} Notched Mark Version Depth h_{mid} 1. Anchor rod R-STUDS 2. 45° shape with anchor rod 3. The flat end of anchor rod 4. Anchor rod R-STUDS 5. Hexagonal nut 6. Washer R-KEX-II Annex A1 of European **Technical Assessment Product description** ETA-21/0244 Threaded anchor rods

Anchor rods with inner thread D O Knurl - Full length Marking: R - Identifying mark ITS - product index Z - carbon steel or A4 - stainless steel XX - thread size YYY - length of sleeve Rebar embedment depth marking hef R-KEX-II Annex A2 of European **Technical Assessment Product description** ETA-21/0244 Anchor rods with inner thread and rebar

Table	Δ1.	Thread	od r	ade
IALDIM	: A I.	HIHEAU	eu i	uus

		Designation			
Part	Steel, zinc plated	Stainless steel	High corrosion resistance stainless steel		
Threaded rod	Steel, property class 5.8 to 12.9 acc. to EN ISO 898-1 electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684 or non-electrolytically applied zinc flake coating ≥ 8 µm acc. EN ISO 10683	Steel 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506 Corrosion resistance class CRC III acc. to EN 1993-1- 4:2006+A1:2015	Steel 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506 Corrosion resistance class CRC V acc. to EN 1993-1- 4:2006+A1:2015		
Hexagon nut	Steel, property class 5 to 12, acc. to EN ISO 898-2; electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684 or non-electrolytically applied zinc flake coating ≥ 8 µm acc. EN ISO 10683	Steel 1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506 Corrosion resistance class CRC III acc. to EN 1993-1- 4:2006+A1:2015	Steel 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506 Corrosion resistance class CRC V acc. to EN 1993-1- 4:2006+A1:2015		
Washer	Steel, acc. to EN ISO 7089; electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684 or non-electrolytically applied zinc flake coating ≥ 8 µm acc. EN ISO 10683	Steel 1.4401, 1.4404, 1.4571 acc. to EN 10088 Corrosion resistance class CRC III acc. to EN 1993-1- 4:2006+A1:2015	Steel 1.4529, 1.4565, 1.4547 acc. to EN 10088 Corrosion resistance class CRC V acc. to EN 1993-1- 4:2006+A1:2015		

Commercial threaded rods (in the case of rods made of galvanized steel – standard rods with property class \leq 8.8 only), with:

- material and mechanical properties according to Table A1,
- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004;
 the documents shall be stored,
- marking of the threaded rod with the embedment depth.

Note: Commercial standard threaded rods made of galvanized steel with property class above 8.8 are not permitted in some Member States.

R-KEX-II	Annex A3
Product description Materials (1)	of European Technical Assessment ETA-21/0244

Table A2: Rods with inner thread

		Designation		
Part	Steel, zinc plated	Stainless steel	High corrosion resistance stainless steel	
Rod with inner thread	Steel, property class 5.8 to 8.8 acc. to EN ISO 898-1 electroplated ≥ 5 µm acc. to EN ISO 4042 or hot-dip galvanized ≥ 45 µm acc. to EN ISO 10684	Steel1.4401, 1.4404, 1.4571 acc. to EN 10088; property class 70 and 80 (A4-70 and A4-80) acc. to EN ISO 3506 Corrosion resistance class CRC III acc. to EN 1993-1-4:2006+A1:2015	Steel 1.4529, 1.4565, 1.4547 acc. to EN 10088; property class 70 acc. to EN ISO 3506	

Table A3: Reinforcing bars according to EN 1992-1-1, Annex C

Product form	Bars and de-coiled rods		
Class	В	С	
Characteristic yield strength fyk or f _{0,2k} [N/mm ²]	400 to	400 to 600	
Minimum value of $k = (f_t / f_y)_k$	mum value of $k = (f_t / f_y)_k$		
Characteristic strain at maximum force, ϵ_{uk} [%]	ain at maximum force, ε _{υk} [%]		
Bendability		Bend / Rebend test	
Maximum deviation from nominal mass (individual bar) [%]	Nominal bar size [mm] ≤ 8 > 8	± 6	•
Bond: minimum relative rib area, f _{R,min}	Nominal bar size [mm] 8 to 12 > 12	0,0	

Rib height: The maximum rib height is: $h_{\text{rib}} \leq 0.07 \cdot \emptyset$

Table A4: Injection mortar

Product	Composition
R-KEX-II (two component injection mortar)	Epoxy system with fillers

R-KEX-II	Annex A4
Product description Materials (2)	of European Technical Assessment ETA-21/0244

Specification of intended use

Anchors subject to:

Static and quasi-static loads: threaded rod size M8 to M30, rod with inner thread sizes $M6/\varnothing 10$ to $M16/\varnothing 24$ and rebar $\varnothing 8$ to $\varnothing 32$.

Seismic performance category C1: threaded rod size M8 to M30 and rebar Ø8 to Ø32.

Base material:

- Reinforced or unreinforced normal weight concrete of strength class C20/25 to C50/60 according to EN 206:2013+A1:2016.
- Cracked and uncracked concrete threaded rod size M8 to M30, and rebar Ø8 to Ø32.
- Uncracked concrete only rod with inner thread sizes M6/Ø10 to M16/Ø24.

Temperature ranges:

Installation temperature (temperature of substrate):

+5°C to +30°C.

In-service temperature:

The anchors may be used in the following temperature range:

- -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C).
- -40°C to +80°C (max. short term temperature +80°C and max. long term temperature +50°C).

Use conditions (environmental conditions):

- Structures subject to dry internal conditions: all materials.
- For all other conditions according to EN 1993-1-4 corresponding to corrosion resistance class (CRC): elements made of stainless steel or high corrosion resistance steel (HCR).

Design methods:

- Anchorages under static or quasi-static loads are designed in accordance to EN 1992-4:2018 and Technical Report TR 055.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EOTA Technical Report TR 045.
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to
 reinforcement or to supports, etc.).

Installation:

- Dry or wet concrete (use category I1).
- Flooded holes (use category I2).
- Installation direction D3 (downward and horizontal and upwards installation).
- The anchors are suitable for hammer drilled holes or diamond core drilled holes.

R-KEX-II	Annex B1
Intended use Specification	of European Technical Assessment ETA-21/0244

Table B1: Installation parameters – threaded anchor rod

Size		M8	M10	M12	M16	M20	M24	M30
Nominal drilling diameter	d ₀ [mm]	10	12	14	18	24	28	35
Maximum diameter hole in the fixture	d _f [mm]	9	12	14	18	22	26	33
Effective embedment	h _{ef,min} [mm]	60	70	80	100	120	140	165
depth	h _{ef,max} [mm]	160	200	240	320	400	480	600
Depth of the drilling hole	h₀ [mm]	h _{ef} + 5 mm						
Minimum thickness of the concrete slab	h _{min} [mm]	h_{ef} + 30 mm; \geq 100 mm h_{ef} + 2d ₀						
Maximum installation torque	T _{inst,max} [Nm]	10	20	40	80	120	180	200
Minimum spacing	s _{min} [mm]	40	40	40	50	60	70	85
Minimum edge distance	c _{min} [mm]	40	40	40	50	60	70	85

R-KEX-II	Annex B2
Intended use Installation parameters (1)	of European Technical Assessment ETA-21/0244

Table B2: Installation parameters – anchor rod with inner thread

Size		M6/ Ø10 /75	M8/ Ø12/ 75	M8/ Ø12/ 90	M10/Ø 16/ 75	M10/Ø 16/ 100	M12/Ø 16/ 100	M16/Ø 24/ 125
Nominal drilling diameter	d₀ [mm]	12	14	14	20	20	20	28
Maximum diameter hole in the fixture	d _f [mm]	7	9	9	12	12	14	18
Effective embedment depth	h _{ef} = h _{nom} [mm]	75	75	90	75	100	100	125
Thread length, min	l _s [mm]	24	25	25	30	30	35	50
Depth of the drilling hole	h ₀ [mm]	h _{ef} + 5 mm						
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef} + 30 mm; ≥ 100 mm h _{ef} + 2d ₀						
Maximum installation torque	T _{inst,max} [Nm]	3	5	5	10	10	20	40
Minimum spacing	s _{min} [mm]	40	40	50	40	50	50	70
Minimum edge distance	c _{min} [mm]	40	40	50	40	50	50	70

R-KEX-II	Annex B3
Intended use Installation parameters (2)	of European Technical Assessment ETA-21/0244

Table B3: Installation parameters – rebar

Size	ze			Ø12	Ø14	Ø16	Ø20	Ø25	Ø32	
Nominal drilling diameter	d₀ [mm]	12	14	18	18	22	26	32	40	
h _{ef,min} [mm]		60	70	80	80	100	120	140	165	
depth	lepth h _{ef,max} [mm]		200	240	280	320	400	500	640	
Depth of the drilling hole	h ₀ [mm]				h _{ef} +	5 mm				
Minimum thickness of the concrete slab	h _{min} [mm]	h _{ef}	+ 30 mm	n; ≥ 100 r	nm		h _{ef} +	- 2d ₀		
Minimum spacing	s _{min} [mm]	40	40	40	40	50	60	70	85	
Minimum edge distance	c _{min} [mm]	40	40	40	40	50	60	70	85	

R-KEX-II	Annex B4
Intended use Installation parameters (3)	of European Technical Assessment ETA-21/0244

Table B4: Maximum processing time and minimum curing time

R-KEX-II										
Mortar temperature [°C]	Concrete (substrate) temperature [°C]	Maximum processing time [min.]	Minimum curing time ¹⁾ [min.]							
+5	+5	150	2880							
+10	+10	120	1080							
+20	+20	35	480							
+25	+30	12	300							

The minimum time from the end of the mixing to the time when the anchor may be torque or loaded (whichever is longer). Minimum mortar temperature for installation +5°C; maximum mortar temperature for installation +25°C. For wet condition and flooded holes the curing time must be doubled.

R-KEX-II	Annex B5
Intended use Maximum processing time and minimum curing time	of European Technical Assessment ETA-21/0244

Dispenser	Cartridge size
	385 ml
Manual gun for side by side cartridges R-GUN-385-P	
	385, 600 ml
Manual gun for side by side cartridges R-GUN-600-P	
Cordless dispenser gun	
Soldies dispenser gun	385, 600 ml
Pneumatic dispenser gun	

R-KEX-II	Annex B7
Intended use Tools (2)	of European Technical Assessment ETA-21/0244

Table B5: Brush diameter for threaded rod

	Threaded rod diameter		M8	M10	M12	M16	M20	M24	M30
dь	Brush diameter	[mm]	12	14	16	20	26	30	37

Table B6: Brush diameter for rod with inner thread

Threaded rod diameter		M6/Ø10	M8/Ø12	M10/Ø16	M12/ Ø16	M16/Ø24	
dь	Brush diameter	[mm]	16	16	22	22	30

Table B7: Brush diameter for rebar

Rebar diameter			Rebar diameter Ø8 Ø10		Ø12	Ø12 Ø14		Ø20	Ø25	Ø32	
dь	Brush diameter	[mm]	14	16	20	20	24	28	37	42	

Table B8: Dosing plug diameter

Hole diameter [mm]	16	18	20	22	24	25	26	28	30	32	35	40	50
Dosing plug R-NOZ-P diameter	Ø16	Ø18	Ø20 t	o Ø22	Ø	24 to Ø	26	Ø28	Ø30	to 32	Ø35	Ø40	Ø50

R-KEX-II	Annex B8
Intended use Tools (3)	of European Technical Assessment ETA-21/0244

1. a. b.	Hole drilling. a. Hammer drilling. Drill hole to the required dia rotary hammer drilling machi b. Diamond core drilling. Drill hole to the required dia diamond core drilling machir core bit are used.	meter and depth using a
2. a. b.	2. Hole cleaning. a. Manual cleaning with brushammer drilled hole: - starting from the drill hole least 4 times using the hale using the specified brush the hole at least 4 times, - starting from the drill hole times with the hand pump b. Cleaning hole, diamond drill flush the hole from the bottimes, - using the specified brush the hole at least 3 times, - starting from the drill hole times with the hand pump	e bottom blow the hole at and pump, , mechanically brush out e bottom, blow at least 4 . ing, with compressed air: ttom with water at least 2 , mechanically brush out e bottom, blow at least 2
3.	Insert cartridge into dispenser a Dispense to waste until even co cm).	
4.	Insert the mixing nozzle to the fainject mortar, slowly withdrawing is filled to 2/3 of its depth.	
5.	5. Immediately insert the threaded slight twisting motion. Remove a around the hole before it sets.	
6.	Leave the fixing undisturbed under elapses.	til the curing time
7. V=0	7. Attach fixture and tighten the nu The installation torque cannot e	
R-KEX-II		Annex B9 of European Technical Assessment
Intended use		ETA 24/0244

Installation instruction – threaded rod

ETA-21/0244

1. a. b.	Hole drilling. a. Hammer drilling. Drill hole to the required diameter and depth using a rotary hammer drilling machine. b. Diamond core drilling. Drill hole to the required diameter and depth using a diamond core drilling machine and the corresponding core bit are used
2. a. b.	2. Hole cleaning. a. Manual cleaning with brush and hand pump for hammer drilled hole: - starting from the drill hole bottom blow the hole at least 4 times using the hand pump, - using the specified brush, mechanically brush out the hole at least 4 times, - starting from the drill hole bottom, blow at least 4 times with the hand pump. b. Cleaning hole, diamond drilling, with compressed air: - flush the hole from the bottom with water at least 2 times, - using the specified brush, mechanically brush out the hole at least 3 times, - starting from the drill hole bottom, blow at least 2 times with the hand pump.
3.	Insert cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained (min. 10 cm).
4.	Insert the mixing nozzle to the far end of the hole and inject mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth.
5.	Immediately insert the rod with inner thread, slowly and with slight twisting motion. Remove any excess mortar around the hole before it sets.
6.	Leave the fixing undisturbed until the curing time elapses.
7.	Attach fixture and tighten the bolt to the required torque. The installation torque cannot exceed T _{inst,max} .
R-KEX-II Intended use Installation instruction – anchor rod wi	Annex B10 of European Technical Assessment ETA-21/0244

1. a. b	1. Hole drilling. a. Hammer drilling. Drill hole to the required diameter and depth using a rotary hammer drilling machine. b. Diamond core drilling. Drill hole to the required diameter and depth using a diamond core drilling machine and the corresponding core bit are used 2. Hole cleaning. a. Manual cleaning with brush and hand pump for hammer drilled hole: - starting from the drill hole bottom blow the hole at least 4 times using the hand pump, - using the specified brush, mechanically brush out the hole at least 4 times, - starting from the drill hole bottom, blow at least 4 times with the hand pump. b. Cleaning hole, diamond drilling, with
3.	compressed air: - flush the hole from the bottom with water at least 2 times, - using the specified brush, mechanically brush out the hole at least 3 times, - starting from the drill hole bottom, blow at least 2 times with the hand pump. 3. Insert cartridge into dispenser and attach nozzle. Dispense to waste until even colour is obtained
* **	(min. 10 cm).
4.	Insert the mixing nozzle to the far end of the hole and inject mortar, slowly withdrawing the nozzle as the hole is filled to 2/3 of its depth.
5.	Immediately insert the rebar, slowly and with slight twisting motion. Remove any excess mortar around the hole before it sets.
6.	Leave the fixing undisturbed until the curing time elapses.
R-KEX-II	Annex B11 of European
Intended use Installation instruction – rel	Technical Assessment

Table C1-1: Characteristic resistance under tension load for threaded rod in uncracked concrete – static and quasi-static loads

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure				·······					
Steel, property class 5.8									
Characteristic resistance	N _{Rk,s}	[kN]	18.	29	42	78	122	176	280
Partial safety factor 1)	γMs	[-]				1,50			
Steel, property class 8.8									
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	126	196	282	449
Partial safety factor 1)	γMs	[-]				1,50			
Steel, property class 10.9	***************************************								
Characteristic resistance	$N_{Rk,s}$	[kN]	37	58	84	157	245	353	561
Partial safety factor 1)	γMs	[-]				1,40			
Steel, property class 12.9									
Characteristic resistance	$N_{Rk,s}$	[kN]	44	70	101	188	294	424	673
Partial safety factor 1)	Ϋ́Ms	[-]				1,40			
Stainless steel, property class A4-70									
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	393
Partial safety factor 1)	Умs	[-]				1,87			
Stainless steel, property class A4-80									
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	126	196	282	448
Partial safety factor 1)	γMs	[-]				1,60			
High corrosion resistant stainless steel									
Characteristic resistance	N _{Rk,s}	[kN]	25	40	59	110	171	247	393
Partial safety factor 1)	Ϋ́Ms	[-]				1,87			***************************************
Combined pull-out and concrete cor	ne failure in uncra		C20/25 -	- hamme	r drilling,	working	life 50 ye	ears	
Temperature range I: 40°C/24°C	T _{Rk,ucr,50}	[N/mm²]	17,0	16,0	17,0	15,0	15,0	13,0	12,0
Temperature range II: 80°C/50°C	T _{Rk,ucr,50}	[N/mm²]	15,0	14,0	15,0	13,0	13,0	12,0	10,0
Combined pull-out and concrete cor	ne failure in uncra	cked concrete	C20/25 -	- diamon	d core di	illing, wo	orking life	50 year	S
Temperature range I: 40°C/24°C	T _{Rk,ucr,50}	[N/mm²]	14,0	15,0	16,0	14,0	14,0	12,0	11,0
Temperature range II: 80°C/50°C	T _{Rk,ucr,50}	[N/mm²]	12,0	14,0	14,0	13,0	13,0	11,0	10,0
Factors - working life 50 years									
		C30/37				1,04			
Increasing factor	Ψο	C40/50				1,07			
		C50/60		,		1,09			
Sustained load factor for τ _{Rk,ucr,50}	$\Psi^0_{ ext{sus},50}$	40°C/24°C				0,75			
in uncracked concrete	1	80°C/50°C				0,72			
Combined pull-out and concrete cor	ne failure in uncra	cked concrete	C20/25 -	- hamme	r drilling,	working	life 100	years	
Temperature range I: 40°C/24°C	TRk,ucr,100	[N/mm²]	17,0	16,0	17,0	15,0	15,0	13,0	12,0
Temperature range II: 80°C/50°C	T _{Rk,ucr,100}	[N/mm²]	15,0	14,0	15,0	13,0	13,0	12,0	10,0
Combined pull-out and concrete cor	ne failure in uncra	cked concrete	C20/25 -	- diamon	d core di	illing, wo	orking life	100 yea	irs
Temperature range I: 40°C/24°C	T _{Rk,ucr,100}	[N/mm²]	14,0	15,0	16,0	14,0	14,0	12,0	11,0
Temperature range II: 80°C/50°C	T _{Rk,ucr,100}	[N/mm²]	12,0	14,0	14,0	13,0	13,0	11,0	10,0
Factors - working life 100 years								•	•
		C30/37				1,04			
Increasing factor	Ψο	C40/50				1,07			
-	· -	C50/60				1,09			

¹⁾ In the absence of other national regulation

R-KEX-II	Annex C1
Performances Characteristic resistance under tension loads in uncracked concrete – threaded rod	of European Technical Assessment ETA-21/0244

Table C1-2: Characteristic resistance under tension load for threaded rod in uncracked concrete – static and quasi-static loads

Size	M8	M10	M12	M16	M20	M24	M30		
Concrete cone failure in uncrack	ed concrete						1	1	·
Factor for uncracked concrete	k _{ucr,N}	[-]		ne .		11,0	,		
Edge distance	C _{cr,N}	[mm]		_		1,5 · h	ef		
Spacing	S _{cr,N}	[mm]				3,0 · h	ef		
Splitting failure									
	C _{cr,sp} for h _{min}			2,0 · h _{ef}			1,5	· h _{ef}	
Edge distance	$c_{cr,sp}$ for $h_{min} < h^{-1} < 2 \cdot h_{ef}$ ($c_{cr,sp}$ from linear interpolation)	[mm]	2 x h _{st}						
	$c_{cr,sp}$ for $h^{(1)} \ge 2 \cdot h_{ef}$		C _{cr,N}						
Spacing	S _{cr,sp}	[mm]				2,0 · c _{cr}	,sp		
Installation safety factors for cor	nbined pull-out, concrete	cone and	splitting	failure					
Installation safety factor for in use category I1		.,	1,0						
Installation safety factor for in use category I2	γinst	[-]	1,2						

¹⁾ h - concrete member thickness.

R-KEX-II Annex C2 of European Performances Characteristic resistance under tension loads in uncracked concrete – threaded rod Annex C2 of European Technical Assessment ETA-21/0244

Table C2-1: Characteristic resistance under tension loads for threaded rod in cracked concrete – static and quasi-static loads

Size		-	M8	M10	M12	M16	M20	M24	M30
Steel failure		L		1					i·
Steel, property class 5.8									
Characteristic resistance	N _{Rk,s}	[kN]	18	29	42	78	122	176	280
Partial safety factor 1)	ΎMs	[-]				1,50			
Steel, property class 8.8									
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	125	196	282	448
Partial safety factor 1)	γ̃Ms	[-]				1,50			
Steel, property class 10.9									
Characteristic resistance	N _{Rk,s}	[kN]	36	58	84	157	245	353	561
Partial safety factor 1)	γMs	[-]				1,40			
Steel, property class 12.9									
Characteristic resistance	N _{Rk,s}	[kN]	43	69	101	188	294	423	673
Partial safety factor 1)	ΎMs	[-]				1,40			
Stainless steel, property class A4-70									
Characteristic resistance	N _{Rk,s}	[kN]	25	40	59	109	171	247	392
Partial safety factor 1)	γMs	[-]				1,87			
Stainless steel, property class A4-80									
Characteristic resistance	N _{Rk,s}	[kN]	29	46	67	125	196	282	448
Partial safety factor 1)	Ϋ́мs	[-]				1,60			
High corrosion resistant stainless stee	, property class 70								
Characteristic resistance	N _{Rk,s}	[kN]	25	40	59	109	171	247	392
Partial safety factor 1)	γMs	[-]				1,87			
Combined pull-out and concrete co	ne failure in cracke	d concrete C	20/25 – ľ	nammer c	irilling, w	orking li	fe 50 yea	rs	
Temperature range I: 40°C/24°C	T _{Rk,cr,50}	[N/mm²]	8,0	8,0	7,0	7,0	7,0	6,0	5,0
Temperature range II: 80°C/50°C	T _{Rk,cr,50}	[N/mm ²]	7,0	7,0	6,0	6,0	6,0	5,0	4,0
Combined pull-out and concrete co	ne failure in cracke	d concrete C	20/25 – c	diamond	core drill	ing, worl	king life :	0 years	
Temperature range I: 40°C/24°C	T _{Rk,cr,50}	[N/mm²]	5,5	7,0	8,0	7,0	8,0	7,0	4,0
Temperature range II: 80°C/50°C	T _{Rk,cr,50}	[N/mm²]	5,0	6,5	7,5	6,5	7,0	6,5	3,5
Factors – working life 50 years		L	1	Ļ	1		l		
ractors working me or yours		C30/37				1.04			
Increasing factor	Ψο	C40/50				1,07			
	70	C50/60				1,09			
Combined pull-out and concrete co	ne failure in cracke	d concrete C	20/25 - I	nammer o	drilling, w	orking li	fe 100 ye	ars	
Temperature range I: 40°C/24°C	T _{Rk,cr,100}	[N/mm²]	8,0	8,0	6,5	7,0	7,0	6,0	5,0
Temperature range II: 80°C/50°C	T _{Rk,cr,100}	[N/mm²]	6,5	7,0	6,0	6,0	6,0	5,0	4,0
Combined pull-out and concrete co	ne failure in cracke	d concrete C	20/25 – 0	diamond	core drill	ing, worl	king life '	00 years	
Temperature range I: 40°C/24°C	T _{Rk,cr,100}	[N/mm²]	5,5	7,0	8,0	7,0	7,0	6,0	4,0
Temperature range II: 80°C/50°C	T _{Rk,cr,100}	[N/mm²]	5,0	6,5	7,0	6,0	6,5	5,0	3,5
Factors – working life 100 years		1			-			1	
		C30/37				1,00			
Increasing factor	Ψο	C40/50				1,00			
Ŭ	'*	C50/60				1,00			

¹⁾ In the absence of other national regulation.

R-KEX-II	Annex C3
Performances Characteristic resistance under tension loads in cracked concrete – threaded rod	of European Technical Assessment ETA-21/0244

Table C2-2: Characteristic resistance under tension load for threaded rod in cracked concrete – static and quasi-static loads

Size				M10	M12	M16	M20	M24	M30	
Concrete cone failure in cracked of	oncrete				•			•		
Factor for cracked concrete	k _{cr,N}	[-]				7,7				
Edge distance	C _{cr,N}	[mm]				1,5 ⋅ h _{ef}				
Spacing	S _{cr,N}	[mm]				3,0 ⋅ h _{ef}				
Splitting failure										
	c _{cr,sp} for h _{min}				2,0 · h _{ef}			1,5 ⋅ h _{ef}		
Edge distance	$c_{\text{or,sp}}$ for $h_{\text{min}} < h^{1)} < 2 \cdot h_{\text{ef}}$ ($c_{\text{cr,sp}}$ from linear interpolation)	[mm]			2 x h ջ։ հ _{տ.ո}	C _{CI,Np}	C _{O'.Sp}			
	$c_{cr,sp}$ for $h^{(1)} \ge 2 \cdot h_{ef}$		C _{cr,N}							
Spacing	S _{cr,sp}	[mm]				2,0 · C _{cr,8}	p			
Installation safety factors for com	bined pull-out, concrete	cone and	splitting	failure		:				
Installation safety factors for in use category !1						1,0				
Installation safety factors for in use category I2	Yinst	[-]	1,2							

¹⁾ h – concrete member thickness

R-KEX-II Annex C4 of European Performances Characteristic resistance under tension loads in cracked concrete – threaded rod Annex C4 of European Technical Assessment ETA-21/0244

Table C3: Characteristic resistance under tension load for rod with inner thread in uncracked concrete - static and quasi-static loads

Size			M6 /Ø10	M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24		
Steel failure							L		
Steel, property class 5.8									
Characteristic resistance	N _{Rk,s}	[kN]	10	18	29	42	78		
Partial safety factor 1)	γMs	[-]			1,50				
Steel, property class 8.8									
Characteristic resistance	N _{Rk,s}	[kN]	16	29	46	67	125		
Partial safety factor 1)	γ _{Ms}	[-]			1,50				
Stainless steel, property class A4-70									
Characteristic resistance	$N_{Rk,s}$	[kN]	14	25	40	59	109		
Partial safety factor 1)	γмs	[-]			1,87				
Stainless steel, property class A4-80									
Characteristic resistance	N _{Rk,s}	[kN]	16	29	46	67	125		
Partial safety factor 1)	γ _{Ms}	[-]			1,60				
High corrosion resistant stainless ste									
Characteristic resistance	N _{Rk,s}	[kN]	14	25	40	59	109		
Partial safety factor 1)	γMs	[-]			1,87				
Combined pull-out and concrete co	one failure in uncracke	d concrete C	20/25 - har	nmer drilling	<u> </u>				
Temperature range I: 40°C/24°C	T _{Rk,ucr,50}	[N/mm²]	8,0	12,0	12,0	11,0	10,0		
Temperature range II: 80°C/50°C	τ _{Rk,ucr,50}	[N/mm ²]	7,5	11,0	11,0	10,0	9,0		
	Ψο	C30/37			1,04				
Increasing factor		C40/50			1,07				
	·	C50/60	·		1,09				
Sustained load factor for TRK,ucr,50	0	40°C/24°C			0,75				
in uncracked concrete	${\psi^0}_{ ext{sus},50}$	80°C/50°C			0,72				
Resistance to concrete cone failur	e in uncracked concret	e – hammer	drilling						
Factor for uncracked concrete	k _{ucr,N}	[-]			11,0				
Edge distance	C _{cr,N}	[mm]			1,5 · h _{ef}				
Spacing	S _{cr.N}	[mm]			3,0 · h _{ef}				
Splitting failure	- 01,14	L			-,				
	c _{cr,sp} for h _{min}			2.0	· h _{ef}		1,5 · h _e		
	C _{cr,sp} for	1	···········	2,0	1 1	· · · · · · · · · · · · · · · · · · ·	1 ,,0 1,6		
	$h_{min} < h^{(2)} < 2 \cdot h_{ef}$								
Edge distance		[mm]		2 x 1	<u> </u>				
-	(c _{cr,sp} from linear			ħ _n	nin				
	interpolation)				C _{cr,Np} C _c	r.sp			
	$c_{cr,sp}$ for $h^{2)} \ge 2 \cdot h_{ef}$		C _{cr,N}						
Spacing	S _{cr,sp}	[mm]	2,0 · c _{cr,sp}						
Installation safety factors for comb	oined pull-out, concrete	cone and s	plitting faile	ure					
Installation safety factors for use category I1					1,2				
Installation safety factors for use category I2	- Yinst	[-]			1,2				

¹⁾ In the absence of other national regulation 3) h – concrete member thickness.

R-KEX-II	Annex C5
Performances Characteristic resistance under tension loads in uncracked concrete – rod with inner thread	of European Technical Assessment ETA-21/0244

Table C4: Characteristic resistance under tension load for rebar in uncracked concrete – static and quasi-static loads

Size	, ioaus		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Steel failure			. 20	<i>D</i> 10	_ 	_ D 17	2.0	_ D2.0	DEU	202
Characteristic resistance	N _{Rk,s}	[kN]			•	A _s 3)	· f _{uk}			
Partial safety factor 1)	γ _{Ms}	[-]				1,	40			
Combined pull-out and concrete co	one failure in uncrac	ked concrete	C20/25	– hamn	ner drilli	ing, wor	king life	50 year	S	
Temperature range I: 40°C/24°C	T _{Rk,ucr,50}	[N/mm²]	11,0	12,0	12,0	10,0	12,0	12,0	9,5	8,5
Temperature range II: 80°C/50°C	[N/mm²]	10,0	11,0	11,0	9,0	11,0	11,0	8,5	7,5	
Combined pull-out and concrete co	one failure in uncrac	ked concrete	C20/25	- diam	ond cor	e drilling	, worki	ng life 50	years	
Temperature range I: 40°C/24°C	TRk,ucr,50	[N/mm²]	9,5	11,0	10,0	10,0	10,5	11,0	9,0	8,0
Temperature range II: 80°C/50°C	TRk,ucr,50	[N/mm²]	8,5	10,0	9,0	9,0	9,0	10,0	8,0	7,0
Factors – working life 50 years										
		C30/37					04			
Increasing factor	Ψc	C40/50					07			
Cambinad mult and agnerate a		C50/60	C20/25				09	400		
Combined pull-out and concrete co	one failure in uncrac			– namr	ner arııı	ing, wor	King lite	100 yea	ırs	
Temperature range I: 40°C/24°C	τ _{Rk,ucr,100}	[N/mm²]	11,0	12,0	12,0	10,0	12,0	12,0	9,5	8,5
Temperature range II: 80°C/50°C	T _{Rk,ucr,100}	[N/mm²]	10,0	11,0	11,0	9,0	11,0	11,0	8,5	7,5
Combined pull-out and concrete co	<u>one failure in uncrac</u>	ked concrete	C20/25	- diam	ond cor	e drilling	, worki	ng life 1	00 years	<u>; </u>
Temperature range I: 40°C/24°C	T _{Rk,ucr,100}	[N/mm²]	9,5	11,0	10,0	10,0	10,5	11,0	9,0	8,0
Temperature range II: 80°C/50°C	T _{Rk,ucr,100}	[N/mm²]	8,5	10,0	9,0	9,0	9,0	10,0	8,0	7,0
Factors – working life 100 years										
		C30/37					04			
Increasing factor	Ψο	C40/50					07			
0		C50/60					09			
Sustained load factor for \(\tau_{Rk,ucr,50}\)	$\Psi^0_{sus,50}$	40°C/24°C 80°C/50°C					75 72			
in uncracked concrete Concrete cone failure in uncracket		100-0/50-0				- 0,	12			
Factor for uncracked concrete	T	[-]	Ι			4.	1,0			
Edge distance	K _{ucr,N}	[mm]	 				بر ∙ h _{ef}			
Spacing	S _{cr.N}	[mm]	·····				· h _{ef}			
Splitting failure	Jar,N	; francij	,			5,0	• •ef			
Opining randie	C _{cr,sp} for h _{min}	1	Ī.		2.0	· h _{ef}			15	· h _{ef}
		\dashv			2,0	ret			1,5	I lef
	$c_{cr,sp}$ for $h_{min} < h^{2} < 2 \cdot h_{ef}$									
Edge distance		[mm]				2 x h _a ,				
	(c _{cr,sp} from linear interpolation)					h _{mss}	C _{19,Np} C _{01,Np}			
	$C_{cr,sp} \text{ for } h^{(2)} \ge 2 \cdot h_{ef}$ $C_{cr,sp}$									
Spacing	S _{cr,sp}	[mm]					C _{cr,sp}			
Installation safety factors for comb		ete cone and	splittin	g failur	9					
Installation safety factors for use cate	egory I1					1	,2			
Installation safety factors for use cate	egory I2 Yinst	[-]				1	,2			

¹⁾ In the absence of other national regulation.

³⁾ Stressed cross section of the steel.

R-KEX-II	Annex C6
Performances Characteristic resistance under tension loads in uncracked concrete – rebar	of European Technical Assessment ETA-21/0244

 $^{^{2)}}$ h – concrete member thickness.

Table C5: Characteristic resistance under tension loads for rebar in cracked concrete – static and quasi-static loads

	$N_{Rk,s}$	[kN]					· f _{uk}			
	γMs	[-]								
ne failu	re in cracked	concrete C	20/25 –	hamme	r drilling	, workir	ng life 50) years		
	T _{Rk,cr,50}	[N/mm²]	5,5	5,0	5,5	5,5	5,0	5,0	5,4	4,0
	τ _{Rk,α,50}	[N/mm²]	5,0	4,5	5,0	5,0	4,5	4,5	5,0	3,0
ne failu	ire in cracked	concrete C	20/25	diamon	d core d	rilling. v	vorking	life 50 y	ears	···
	τ _{Rk,cr,50}	[N/mm²]	5,5	5,5	6,0	6,0	5,0	5,5	4,5	4,
	T _{Rk,cr,50}	[N/mm²]	5,0	5,0	5,5	5,5	4,5	5,0	4,0	4,
	Ψο									
ne failu	ire in cracked	concrete C	20/25 –	hamme	r drilling	, workii	ng life 1	oo years		
	T _{Rk,cr,100}	[N/mm²]	5,5	5,0	5,5	5,5	5,0	5,0	5,4	4,
	T _{Rk,cr,100}	[N/mm²]	5,0	4,5	5,0	5,0	4,5	4,5	5,0	3,
ne failu	ire in cracked	concrete C	20/25 –	diamon	d core d	irilling, v	working	life 100	years	
	T _{Rk,cr,100}	[N/mm ²]	5,5	5,5	6,0	6,0	5,0	5,0	4,5	4,
emperature range II: 80°C/50°C τ _{Rk,cr,100}		[N/mm²]	5,0	5,0	5,5	5,5	4,5	4,5	4,0	4,
			1						•	
	Ψο									
		C50/60					09			
oncrete		1								
										
	S _{cr,N}	j [mm]				3,0	· N _{ef}			
		т								
C _{cr,}	_{sp} for h _{min}				2,0	· h _{ef}			1,5	\cdot $h_{ ext{ef}}$
(C _{cr.sp} for	1				ı			-	
		[mm]					l			
		[iiiiii]				Z X net				
inte	erpolation)					n _{mn}	CO.NP CO.SP	2		
						C.	or N			
- J. 40, 10		[mm]								
null-out			ling fail	ire		2,0	→cr,sp			
,un out,		lo ana opin		u. v			_			
						1	,2			
	$\gamma_{\rm inst}$	[-]					^			
		1				1	.,			
	one failu one failu one failu one failu one failu concrete Cor,sp fo	pne failure in cracked $T_{RK,cr,50}$ $T_{RK,cr,50}$ $T_{RK,cr,50}$ Trunce failure in cracked $T_{RK,cr,50}$ Trunce failure in cracked $T_{RK,cr,100}$ Trunce failure in cracked $T_{RK,cr,1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γ _{Mes} [-] 1,40	The failure in cracked concrete C20/25 – hammer drilling, working life 50 years Trick,cr,50 [N/mm²] 5,5 5,0 5,0 5,5 5,5 5,0 5,0 5,4 Trick,cr,50 [N/mm²] 5,0 4,5 5,0 5,0 4,5 4,5 5,0 In failure in cracked concrete C20/25 – diamond core drilling, working life 50 years Trick,cr,50 [N/mm²] 5,5 5,5 6,0 6,0 6,0 5,0 5,5 4,5 Trick,cr,50 [N/mm²] 5,0 5,0 5,5 5,5 4,5 5,0 4,5 Trick,cr,50 [N/mm²] 5,0 5,0 5,5 5,5 4,5 5,0 4,0 Trick,cr,50 [N/mm²] 5,0 5,0 5,5 5,5 4,5 5,0 4,0 Trick,cr,50 [N/mm²] 5,0 5,0 5,5 5,5 5,5 4,5 5,0 4,0 Trick,cr,100 [N/mm²] 5,5 5,0 5,5 5,5 5,0 5,0 5,0 5,4 Trick,cr,100 [N/mm²] 5,0 4,5 5,0 5,0 4,5 4,5 5,0 In failure in cracked concrete C20/25 – diamond core drilling, working life 100 years Trick,cr,100 [N/mm²] 5,0 4,5 5,0 5,0 4,5 4,5 5,0 In failure in cracked concrete C20/25 – diamond core drilling, working life 100 years Trick,cr,100 [N/mm²] 5,5 5,5 6,0 6,0 6,0 5,0 5,0 4,5 Trick,cr,100 [N/mm²] 5,0 5,5 5,5 6,0 6,0 6,0 5,0 5,0 4,5 Trick,cr,100 [N/mm²] 5,0 5,0 5,5 5,5 4,5 4,5 4,5 4,0 Trick,cr,100 [N/mm²] 5,0 5,0 5,5 5,5 6,0 6,0 6,0 5,0 5,0 4,5 Trick,cr,100 [N/mm²] 5,0 5,0 5,5 5,5 6,0 6,0 6,0 5,0 5,0 4,5 Trick,cr,100 [N/mm²] 5,0 5,0 5,5 5,5 6,0 6,0 6,0 5,0 5,0 4,5 Trick,cr,100 [N/mm²] 5,0 5,0 5,5 5,5 6,0 6,0 6,0 5,0 5,0 4,5 Trick,cr,100 [N/mm²] 5,0 5,0 5,5 5,5 6,0 6,0 6,0 5,0 5,0 4,5 Trick,cr,100 [N/mm²] 5,0 5,0 5,0 5,5 5,5 6,0 6,0 6,0 5,0 5,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6,0 6

¹⁾ In the absence of other national regulation

R-KEX-II Performances Characteristic resistance under tension loads in cracked concrete – rebar Annex C7 of European Technical Assessment ETA-21/0244

³⁾ h – concrete member thickness

⁴⁾ Stressed cross section of the steel element

Table C6: Characteristic	: resistance for shear	loads for threaded rod	 steel failure without lever arm

Size	,		M8	M10	M12	M16	M20	M24	M30	
Steel, property class 5.8				1			L		L	
Characteristic resistance	$V_{Rk,s}$	[kN]	9	14	21	39	61	88	140	
Factor considering ductility	k ₇	[-]				0,8				
Partial safety factor 1)	Ϋ́Ms	[-]				1,25				
Steel, property class 8.8			······································							
Characteristic resistance	V _{Rk,s}	[kN]	15	23	34	63	98	141	224	
Factor considering ductility	k ₇	[-]	0,8							
Partial safety factor 1)	Ϋ́Ms	[-]				1,25				
Steel, property class 10.9										
Characteristic resistance	$V_{Rk,s}$	[kN]	18	29	42	78	122	176	280	
Factor considering ductility	k ₇	[-]	0,8							
Partial safety factor 1)	YMs	[-]	1,50							
Steel, property class 12.9				***************************************						
Characteristic resistance	$V_{Rk,s}$	[kN]	22	35	51	94	147	212	336	
Factor considering ductility	k ₇	[-]				0,8	•			
Partial safety factor 1)	Умs	[-]				1,50				
Stainless steel, property class A4-70						· · · · · · · · · · · · · · · · · · ·				
Characteristic resistance	$V_{Rk,s}$	[kN]	13	20	29	55	86	124	196	
Factor considering ductility	k ₇	[-]				0,8				
Partial safety factor 1)	Ϋ́Ms	[-]				1,56				
Stainless steel, property class A4-80						***************************************			•	
Characteristic resistance	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	224	
Factor considering ductility	k ₇	[-]		•	•	0,8				
Partial safety factor 1)	Ϋ́Ms	[-]	1,33							
High corrosion resistant stainless steel	, property class 70					······································				
Characteristic resistance	$V_{Rk,s}$	[kN]	13	20	29	55	86	124	196	
Factor considering ductility	k ₇	[-]				0,8				
Partial safety factor 1)	γMs	[-]				1,56				

¹⁾ In the absence of other national regulation.

D		_11
ж.	 _ ^	II I

Performances

Characteristic resistance under shear loads in cracked and uncracked concrete – threaded rod

Annex C8

of European Technical Assessment ETA-21/0244

Table C7: Characteristic resistance under shear loads for threaded rod – steel failure with lever arm

Size			M8	M10	M12	M16	M20	M24	M30	
Steel, property class 5.8										
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	561	1124	
Partial safety factor 1)	Умs	[-]	1,25							
Steel, property class 8.8										
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1799	
Partial safety factor 1)	YMs	[-]				1,25				
Steel, property class 10.9							***************************************			
Characteristic resistance	M ⁰ Rk,s	[Nm]	37	75	131	333	649	1123	2249	
Partial safety factor 1)	γMs	[-]				1,50				
Steel, property class 12.9										
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	45	90	157	400	779	1347	2698	
Partial safety factor 1)	Ϋ́Ms	[-]				1,50				
Stainless steel, property class A4-70										
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1574	
Partial safety factor 1)	γMs	[-]				1,56				
Stainless steel, property class A4-80										
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1799	
Partial safety factor 1)	Ϋ́Ms	[-]				1,33				
High corrosion resistant stainless steel, pr		7-5								
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	786	1574	
Partial safety factor 1)	Ϋ́Ms	[-]				1,56				

¹⁾ In the absence of other national regulation.

Table C8: Characteristic resistance under shear loads – pry out and concrete edge failure for threaded rod

Size			M8	M10	M12	M16	M20	M24	M30
Pry out failure									
Factor	k ₈	[-]				2			
Concrete edge failure									
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	30
Effective length of anchor under shear loading	l _f	[mm]	min (h _{ef} , 12d _{nom})						

R-KEX-II	Annex C9
Performances Characteristic resistance under shear loads in cracked and uncracked concrete – threaded rod	of European Technical Assessment ETA-21/0244

Table C9: Characteristic resistance under shear loads for rod with inner thread – steel failure without lever

Size			M6/ Ø10	M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24
Steel, property class 5.8		· · · · · · · · · · · · · · · · · · ·					
Characteristic resistance	$V_{Rk,s}$	[kN]	5,0	9,2	14,5	21,1	39,3
Factor considering ductility	k ₇	[-]		•	0,8		
Partial safety factor 1)	YMs	[-]			1,25		
Steel, property class 8.8						-	
Characteristic resistance	$V_{Rk,s}$	[kN]	8,0	14,6	23,2	33,7	62,8
Factor considering ductility	k ₇	[-]			0,8		
Partial safety factor 1)	Ϋ́Ms	[-]		•	1,25		
Stainless steel, property class A4-70							
Characteristic resistance	$V_{Rk,s}$	[kN]	7,0	12,8	20,3	29,5	55,0
Factor considering ductility	k ₇	[-]			0,8		
Partial safety factor 1)	Ϋ́Ms	[-]			1,56		
Stainless steel, property class A4-80							
Characteristic resistance	$V_{Rk,s}$	[kN]	8,0	14,6	23,2	33,7	62,8
Factor considering ductility	k ₇	[-]			0,8		
Partial safety factor 1)	γMs	[-]			1,33		
High corrosion resistant stainless stee	l, property class 70						
Characteristic resistance	$V_{Rk,s}$	[kN]	7,0	12,8	20,3	29,5	55,0
Factor considering ductility	k ₇	[-]			0,8		
Partial safety factor 1)	γ _{Ms}	[·]			1,56		

¹⁾ In the absence of other national regulation.

Table C10: Characteristic resistance under shear loads for rod with inner thread – steel failure with lever arm

Size			M6/ Ø10	M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24
Steel, property class 5.8		····································					
Characteristic resistance	M ^o _{Rk,s}	[Nm]	7,6	18,7	37,4	65,5	166,5
Partial safety factor 1)	γ _{Ms}	[-]			1,25		
Steel, property class 8.8							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	12,2	30,0	59,8	104,8	266,4
Partial safety factor 1)	γMs	[-]			1,25		
Stainless steel, property class A4-70							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	10,7	26,2	52,3	91,7	233,1
Partial safety factor 1)	γMs	[-]		-	1,56		
Stainless steel, property class A4-80							
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	12,2	30,0	59,8	104,8	266,4
Partial safety factor 1)	γMs	[-]			1,33		
High corrosion resistant stainless steel, prope	erty class 70	*					
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]	10,7	26,2	52,3	91,7	233,1
Partial safety factor 1)	Ϋ́Ms	[-]			1,56		

¹⁾ In the absence of other national regulation.

Table C11: Characteristic resistance under shear loads – pry out and concrete edge failure for rod with inner thread

Size				M8/ Ø12	M10/ Ø16	M12/ Ø16	M16/ Ø24		
Pry out failure									
Factor	k ₈	[-]	2						
Concrete edge failure						***************************************			
Outside diameter of anchor	d _{nom}	[mm]	10	12	16	16	24		
Effective length of anchor under shear loading	l _f	[mm]	min (h _{ef} ; 12d _{nom})						

R-KEX-II Annex C10 of European Technical Assessment Characteristic resistance under shear loads in cracked and uncracked concrete – rod with inner thread

Table C12: Characteristic resistance under shear loads for rebar – steel failure without lever arm

Size				Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Rebar										
Characteristic resistance	$V_{Rk,s}$	[kN]				0,5 · A	$(s^2) \cdot f_{uk}$			
Factor considering ductility	k ₇	[-]	0,8							
Partial safety factor 1)	Умs	[-]	1,5							

¹⁾ In the absence of other national regulation.

Table C13: Characteristic resistance under shear loads for rebar – steel failure with lever arm

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Rebar									·	
Characteristic resistance	M ⁰ _{Rk,s}	[Nm]				1,2 · W	/ _{el} ²) ⋅ f _{uk}			
Partial safety factor 1)	γMs	[-]				1,	,5			

Table C14: Characteristic resistance under shear loads – pry out and concrete edge failure for rebar

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Pry out failure				1						
Factor	k ₈	[-]				2	2			
Concrete edge failure										
Outside diameter of anchor	d_{nom}	[mm]	8	10	12	14	16	20	25	32
Effective length of anchor under shear loading	l _f	[mm]	min (h _{ef} ; 12d _{nom}) min (h _{ef} ;							_f ; 8d _{nom})

R-KEX-II **Annex C11** of European **Technical Assessment Performances** ETA-21/0244 Characteristic resistance under shear loads in cracked and uncracked concrete - rebars

²⁾ Stressed cross section of the steel element.

¹⁾ In the absence of other national regulation.
2) Elastic section modulus calculated from the stressed cross section of steel element.

Table C15: Displacement under tension loads - threaded rod

				M12	M16	M20	M24	M30
incracked concrete C20	/25 to C50/6	0 under	tension	loads				
δ_{N0}	[mm]	0,33	0,40	0,41	0,47	0,52	0,56	0,70
δ _{N∞}	[mm]	0,75	0,75	0,75	0,75	0,75	0,75	0,75
racked concrete C20/25	to C50/60 υ	ınder ter	sion loa	ıds				
δ_{N0}	[mm]	0,20	0,20	0,24	0,28	0,39	0,44	0,46
$\delta_{N_{\infty}}$	[mm]	3,0	3,0	2,5	2,6	2,5	2,4	3,0
	$\begin{array}{c c} \delta_{\text{No}} \\ \hline \delta_{\text{N} \circ} \\ \hline \end{array}$ racked concrete C20/25 δ_{NO}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Second concrete C20/25 to C50/60 under tension Second concrete C20/25 to C50/60 under tension Second concrete C20/25 to C50/60 under tension load Second concrete C20/25 to C50/60 under tension load	Second concrete C20/25 to C50/60 under tension loads Second	No [mm] 0,33 0,40 0,41 0,47 0,75	Second concrete C20/25 to C50/60 under tension loads Second	Section Se

These values are suitable for each temperature range and categories specified in Annex B1 Calculation of the displacement: $\delta_{N0} = \delta_{N0}$ -factor · N; $\delta_{N} = \delta_{N\infty}$ -factor · N; (N – applied tension load)

Table C16: Displacement under shear loads – threaded rod

ize				M10	M12	M16	M20	M24	M30
Characteristic displacement in	cracked and uncracked o	concrete C2	0/25 to (C50/60 u	nder she	ear loads	;		
Diantagement 1)	δ _{νο}	[mm]	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Displacement 1)	δ _{∨∞}	[mm]	3,7	3,7	3,7	3,7	3,7	3,7	3,7

These values are suitable for each temperature range and categories specified in Annex B1 Calculation of the displacement: δ_{N0} = δ_{N0}-factor · V; δ_N = δ_{N∞}-factor · V; (V – applied shear load)

Table C17: Displacement under tension loads - rod with inner thread

Size			M6/Ø10	M8/Ø12	M10/Ø16	M12/Ø16	M16/Ø24
Characteristic displacement in uncre	acked concrete	C20/25 to	C50/60 unde	r tension loa	ds		
Displacement 1)	δ_{N0}	[mm]	0,25	0,25	0,26	0,32	0,37
Displacement 1)	δ _{N∞}	[mm]	0,75	0,75	0,75	0,75	0,75

Table C18: Displacement under shear loads - rod with inner thread

Size	ize				M10/Ø16	M12/Ø16	M16/Ø24
Characteristic displacement i	n uncracked concrete	C20/25 to	C50/60 unde	r shear load:	5		
Disales and 1)	δνο	[mm]	2,5	2,5	2,5	2,5	2,5
Displacement 1)	δ _{V∞}	[mm]	3,7	3,7	3,7	3,7	3,7

These values are suitable for each temperature range and categories specified in Annex B1 Calculation of the displacement: δ_{N0} = δ_{N0}-factor · V; δ_N = δ_{N∞}-factor · V; (V – applied shear load)

R-KEX-II Annex C12 of European Technical Assessment ETA-21/0244 with inner thread

Table C19: Displacement under tension loads - rebar

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Characteristic displacement i	n uncracked concrete	e C20/25 t	o C50/60	under to	ension lo	ads				
D:	δ _{NO}	[mm]	0,25	0,25	0,32	0,37	0,43	0,45	0,48	0,53
Displacement 1)	δ _{N∞}	[mm]	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,7
Characteristic displacement i	n cracked concrete C	20/25 to 0	C50/60 ui	nder tens	sion load	ls				
Disabassant	δ _{NO}	[mm]	0,2	0,2	0,24	0,30	0,31	0,34	0,38	0,40
Displacement	δ _{N∞}	[mm]	3,0	3,0	3,0	3,0	3,0	3,0	3,0	3,0

These values are suitable for each temperature range and categories specified in Annex B1. Calculation of the displacement: $\delta_{N0} = \delta_{N0}$ -factor · N; $\delta_{N} = \delta_{N\infty}$ -factor · N; (N – applied tension load)

Table C20: Displacement under shear loads - rebar

Size				Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Characteristic displacement in cra	cked and uncracke	d concrete	C20/25	to C50/	60 unde	r shear I	oads			
Diantagement 1)	δνο	[mm]	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Displacement 1)	δ _{V∞}	[mm]	3,7	3,7	3,7	3,7	3,7	3,7	3,7	3,7

These values are suitable for each temperature range and categories specified in Annex B1 Calculation of the displacement: δ_{N0} = δ_{N0}-factor · V; δ_N = δ_{N∞}-factor · V; (V – applied shear load)

R-KEX-II

Performances

Displacement under service loads: tension and shear loads – rebar

Annex C13

of European Technical Assessment ETA-21/0244

Table C21: Characteristic resistance under tension load for threaded rod for seismic performance category C1

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure			i		L	i			
Steel, property class 5.8									
Characteristic resistance	N _{Rk,s,seis}	[kN]	18	29	42	78	122	176	280
Partial safety factor 1)	YMs, seis	[-]				1,50			
Steel, property class 8.8									
Characteristic resistance	N _{Rk,s,seis}	[kN]	29	46	67	125	196	282	448
Partial safety factor 1)	YMs, seis	[-]				1,50			
Stainless steel, property class A4-70		-							
Characteristic resistance	N _{Rk,s, seis}	[kN]	25	40	59	109	171	247	392
Partial safety factor 1)	γ̃Ms, seis	[-]				1,87			
Stainless steel, property class A4-80		***************************************							
Characteristic resistance	N _{Rk,s, seis}	[kN]	29	46	67	125	196	282	448
Partial safety factor 1)	YMs, sels	[-]		-		1,60			
High corrosion resistant stainless steel,	property class 70								
Characteristic resistance	N _{Rk,s, seis}	[kN]	25	40	59	109	171	247	392
Partial safety factor 1)	γMs, seis	[-]				1,87			
Combined pull-out and concrete con-		fe 50 years							
Temperature range I: 40°C/24°C	T _{Rk,seis}	[N/mm²]	6,0	7,0	6,5	7,0	6,0	5,5	4,0
Temperature range II: 80°C/50°C	T _{Rk,seis}	[N/mm²]	5,0	6,5	5,5	6,0	5,5	5,0	3,5
Combined pull-out and concrete con-	e failure, orking life	100 years							
Temperature range I: 40°C/24°C	T _{Rk,seis}	[N/mm²]	6,0	7,0	6,0	6,5	6,0	5,5	4,0
Temperature range II: 80°C/50°C	T _{Rk,sels}	[N/mm²]	5,0	6,0	5,5	6,0	5,5	5,0	3,5

Note: Design method according to TR 045.

Table C22: Characteristic resistance under tension load for rebar for seismic performance category C1

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Steel failure				1	L	1	<u> </u>		l	i
Characteristic resistance	N _{Rk,s,sels}	[kN]				A _s ²⁾	· f _{uk}			
Partial safety factor 1)	YMs, seis	[-]				1,	40			
Combined pull-out and concrete cone		life 50 years								
Temperature range I: 40°C/24°C	T _{Rk,seis}	[N/mm²]	4,0	4,5	5,0	5,0	5,0	5,0	5,0	3,0
Temperature range II: 80°C/50°C	₹Rk,seis	[N/mm²]	3,5	4,0	4,5	4,5	4,5	4,5	4,5	2,5
Combined pull-out and concrete cone	failure, working	life 100 years	\$	J						I
Temperature range I: 40°C/24°C	T _{Rk,seis}	[N/mm²]	3,5	4,5	5,0	5,0	5,0	3,5	5,0	3,0
Temperature range II: 80°C/50°C	τ _{Rk,seis}	[N/mm²]	3,5	4,0	4,5	4,5	4,5	4,0	4,5	2,5

Note: Design method according to TR 045.

R-KEX-II

Performances
Characteristic resistance under tension loads for threaded rod and rebar for seismic performance category 1

Annex C14
of European
Technical Assessment
ETA-21/0244

¹⁾ In the absence of other national regulation

¹⁾ In the absence of other national regulation

³⁾ Stressed cross section of the steel element

Table C23: Characteristic resistance under shear loads for threaded rod for seismic performance category C1 – steel failure without lever arm

Size			M8	M10	M12	M16	M20	M24	M30
Steel failure with threaded rod grade 5	5.8		.1	1,	1				
Characteristic resistance	V _{Rk,s,seis}	[kN]	6,3	10,1	14,7	27,3	42,7	61,6	98,0
Partial safety factor 1)	YMs, seis	[-]				1,25			
Steel failure with threaded rod grade 8	.8								
Characteristic resistance	V _{Rk,s, seis}	[kN]	10,2	16,1	23,5	44,1	68,6	98,7	156,8
Partial safety factor 1)	γMs, seis	[-]				1,25			
Steel failure with stainless steel thread	ded rod A4-70								
Characteristic resistance	V _{Rk,seis}	[kN]	9,1	14,4	20,7	38,5	59,9	86,5	137,4
Partial safety factor 1)	YMs, seis	[-]				1,56			
Steel failure with stainless steel thread	ded rod A4-80								
Characteristic resistance	V _{Rk,seis}	[kN]	10,2	16,1	23,5	44,1	68,6	98,7	157,2
Partial safety factor 1)	YMs, seis	[-]				1,33			
Steel failure with high corrosion stain	less steel grade 70								
Characteristic resistance	V _{Rk,seis}	[kN]	9,1	14,4	20,7	38,5	59,9	86,5	137,4
Partial safety factor 1)	γ̃Ms, seis	[-]				1,56			

¹⁾ In the absence of other national regulation.

Table C24: Characteristic resistance under shear loads for rebar for seismic performance category C1

– steel failure without lever arm

Size			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32
Steel failure with rebar										
Characteristic resistance	V _{Rk,s,seis}	[kN]				0,35 · A	A _s ²⁾ · f _{uk}			
Partial safety factor 1)	YMs, seis	[-]				1	,5			

¹⁾ In the absence of other national regulation.

R-KEX-II Performances Characteristic resistance under shear loads for seismic performance category 1 Annex C15 of European Technical Assessment ETA-21/0244

²⁾ Stressed cross section of the steel element

Table C25: Displacement under tension loads - threaded rod for seismic performance category C1

Size			M8	M10	M12	M16	M20	M24	M30
Displacement	δ _{N,seis}	[mm]	2,8	3,0	3,0	3,2	3,3	4,0	5,5

Table C26: Displacement under shear loads – threaded rod for seismic performance category C1

Size			M8	M10	M12	M16	M20	M24	M30
Displacement	$\delta_{V,seis}$	[mm]	3,4	4,0	5,0	5,3	5,9	6,0	6,5

Table C27: Displacement under tension loads – rebar for seismic performance category C1

Size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32	
Displacement	$\delta_{N,seis}$	[mm]	3,0	3,3	3,5	3,9	4,1	4,5	5,6	6,0

Table C28: Displacement under shear loads - rebar for seismic performance category C1

Size		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø32	
Displacement	$\delta_{V,seis}$	[mm]	3,6	3,7	4,0	4,6	4,8	5,5	6,6	7,0

R-KEX-II

Performances

Displacement under service loads: tension and shear loads for seismic performance category C1 – threaded rod and rebar

Annex C16

of European
Technical Assessment
ETA-21/0244